Files
libopenapi/datamodel/low/base/schema.go
Dave Shanley 04eac2abe7 More hardening with digitla ocean
some ref handling was a bit strange, now it's rendering correctly. I have a feeling we will be back to the diff engine at some point soon, it's picking up some strange changes that are so deep in the model, I can't determine what is what, so we will wait for another set of triggers to appear.
2023-03-26 06:10:31 -04:00

1263 lines
39 KiB
Go

package base
import (
"crypto/sha256"
"fmt"
"reflect"
"sort"
"strconv"
"strings"
"github.com/pb33f/libopenapi/datamodel/low"
"github.com/pb33f/libopenapi/index"
"github.com/pb33f/libopenapi/utils"
"gopkg.in/yaml.v3"
)
// SchemaDynamicValue is used to hold multiple possible values for a schema property. There are two values, a left
// value (A) and a right value (B). The left value (A) is a 3.0 schema property value, the right value (B) is a 3.1
// schema value.
//
// OpenAPI 3.1 treats a Schema as a real JSON schema, which means some properties become incompatible, or others
// now support more than one primitive type or structure.
// The N value is a bit to make it each to know which value (A or B) is used, this prevents having to
// if/else on the value to determine which one is set.
type SchemaDynamicValue[A any, B any] struct {
N int // 0 == A, 1 == B
A A
B B
}
// IsA will return true if the 'A' or left value is set. (OpenAPI 3)
func (s SchemaDynamicValue[A, B]) IsA() bool {
return s.N == 0
}
// IsB will return true if the 'B' or right value is set (OpenAPI 3.1)
func (s SchemaDynamicValue[A, B]) IsB() bool {
return s.N == 1
}
// Schema represents a JSON Schema that support Swagger, OpenAPI 3 and OpenAPI 3.1
//
// Until 3.1 OpenAPI had a strange relationship with JSON Schema. It's been a super-set/sub-set
// mix, which has been confusing. So, instead of building a bunch of different models, we have compressed
// all variations into a single model that makes it easy to support multiple spec types.
//
// - v2 schema: https://swagger.io/specification/v2/#schemaObject
// - v3 schema: https://swagger.io/specification/#schema-object
// - v3.1 schema: https://spec.openapis.org/oas/v3.1.0#schema-object
type Schema struct {
// Reference to the '$schema' dialect setting (3.1 only)
SchemaTypeRef low.NodeReference[string]
// In versions 2 and 3.0, this ExclusiveMaximum can only be a boolean.
ExclusiveMaximum low.NodeReference[*SchemaDynamicValue[bool, int64]]
// In versions 2 and 3.0, this ExclusiveMinimum can only be a boolean.
ExclusiveMinimum low.NodeReference[*SchemaDynamicValue[bool, int64]]
// In versions 2 and 3.0, this Type is a single value, so array will only ever have one value
// in version 3.1, Type can be multiple values
Type low.NodeReference[SchemaDynamicValue[string, []low.ValueReference[string]]]
// Schemas are resolved on demand using a SchemaProxy
AllOf low.NodeReference[[]low.ValueReference[*SchemaProxy]]
// Polymorphic Schemas are only available in version 3+
OneOf low.NodeReference[[]low.ValueReference[*SchemaProxy]]
AnyOf low.NodeReference[[]low.ValueReference[*SchemaProxy]]
Discriminator low.NodeReference[*Discriminator]
// in 3.1 examples can be an array (which is recommended)
Examples low.NodeReference[[]low.ValueReference[any]]
// in 3.1 PrefixItems provides tuple validation using prefixItems.
PrefixItems low.NodeReference[[]low.ValueReference[*SchemaProxy]]
// in 3.1 Contains is used by arrays and points to a Schema.
Contains low.NodeReference[*SchemaProxy]
MinContains low.NodeReference[int64]
MaxContains low.NodeReference[int64]
// items can be a schema in 2.0, 3.0 and 3.1 or a bool in 3.1
Items low.NodeReference[*SchemaDynamicValue[*SchemaProxy, bool]]
// 3.1 only
If low.NodeReference[*SchemaProxy]
Else low.NodeReference[*SchemaProxy]
Then low.NodeReference[*SchemaProxy]
DependentSchemas low.NodeReference[map[low.KeyReference[string]]low.ValueReference[*SchemaProxy]]
PatternProperties low.NodeReference[map[low.KeyReference[string]]low.ValueReference[*SchemaProxy]]
PropertyNames low.NodeReference[*SchemaProxy]
UnevaluatedItems low.NodeReference[*SchemaProxy]
UnevaluatedProperties low.NodeReference[*SchemaProxy]
// Compatible with all versions
Title low.NodeReference[string]
MultipleOf low.NodeReference[int64]
Maximum low.NodeReference[int64]
Minimum low.NodeReference[int64]
MaxLength low.NodeReference[int64]
MinLength low.NodeReference[int64]
Pattern low.NodeReference[string]
Format low.NodeReference[string]
MaxItems low.NodeReference[int64]
MinItems low.NodeReference[int64]
UniqueItems low.NodeReference[int64]
MaxProperties low.NodeReference[int64]
MinProperties low.NodeReference[int64]
Required low.NodeReference[[]low.ValueReference[string]]
Enum low.NodeReference[[]low.ValueReference[any]]
Not low.NodeReference[*SchemaProxy]
Properties low.NodeReference[map[low.KeyReference[string]]low.ValueReference[*SchemaProxy]]
AdditionalProperties low.NodeReference[any]
Description low.NodeReference[string]
ContentEncoding low.NodeReference[string]
ContentMediaType low.NodeReference[string]
Default low.NodeReference[any]
Nullable low.NodeReference[bool]
ReadOnly low.NodeReference[bool]
WriteOnly low.NodeReference[bool]
XML low.NodeReference[*XML]
ExternalDocs low.NodeReference[*ExternalDoc]
Example low.NodeReference[any]
Deprecated low.NodeReference[bool]
Extensions map[low.KeyReference[string]]low.ValueReference[any]
// Parent Proxy refers back to the low level SchemaProxy that is proxying this schema.
ParentProxy *SchemaProxy
*low.Reference
}
// Hash will calculate a SHA256 hash from the values of the schema, This allows equality checking against
// Schemas defined inside an OpenAPI document. The only way to know if a schema has changed, is to hash it.
func (s *Schema) Hash() [32]byte {
// calculate a hash from every property in the schema.
var d []string
if !s.SchemaTypeRef.IsEmpty() {
d = append(d, fmt.Sprint(s.SchemaTypeRef.Value))
}
if !s.Title.IsEmpty() {
d = append(d, fmt.Sprint(s.Title.Value))
}
if !s.MultipleOf.IsEmpty() {
d = append(d, fmt.Sprint(s.MultipleOf.Value))
}
if !s.Maximum.IsEmpty() {
d = append(d, fmt.Sprint(s.Maximum.Value))
}
if !s.Minimum.IsEmpty() {
d = append(d, fmt.Sprint(s.Minimum.Value))
}
if !s.MaxLength.IsEmpty() {
d = append(d, fmt.Sprint(s.MaxLength.Value))
}
if !s.MinLength.IsEmpty() {
d = append(d, fmt.Sprint(s.MinLength.Value))
}
if !s.Pattern.IsEmpty() {
d = append(d, fmt.Sprint(s.Pattern.Value))
}
if !s.Format.IsEmpty() {
d = append(d, fmt.Sprint(s.Format.Value))
}
if !s.MaxItems.IsEmpty() {
d = append(d, fmt.Sprint(s.MaxItems.Value))
}
if !s.MinItems.IsEmpty() {
d = append(d, fmt.Sprint(s.MinItems.Value))
}
if !s.UniqueItems.IsEmpty() {
d = append(d, fmt.Sprint(s.UniqueItems.Value))
}
if !s.MaxProperties.IsEmpty() {
d = append(d, fmt.Sprint(s.MaxProperties.Value))
}
if !s.MinProperties.IsEmpty() {
d = append(d, fmt.Sprint(s.MinProperties.Value))
}
if !s.AdditionalProperties.IsEmpty() {
// check type of properties, if we have a low level map, we need to hash the values in a repeatable
// order.
to := reflect.TypeOf(s.AdditionalProperties.Value)
vo := reflect.ValueOf(s.AdditionalProperties.Value)
var values []string
switch to.Kind() {
case reflect.Slice:
for i := 0; i < vo.Len(); i++ {
vn := vo.Index(i).Interface()
if jh, ok := vn.(low.HasValueUnTyped); ok {
vn = jh.GetValueUntyped()
fg := reflect.TypeOf(vn)
gf := reflect.ValueOf(vn)
if fg.Kind() == reflect.Map {
for _, ky := range gf.MapKeys() {
hu := ky.Interface()
values = append(values, fmt.Sprintf("%s:%s", hu, low.GenerateHashString(gf.MapIndex(ky).Interface())))
}
continue
}
values = append(values, fmt.Sprintf("%d:%s", i, low.GenerateHashString(vn)))
}
}
sort.Strings(values)
d = append(d, strings.Join(values, "||"))
case reflect.Map:
for _, k := range vo.MapKeys() {
var x string
var l int
var v any
// extract key
if o, ok := k.Interface().(low.HasKeyNode); ok {
x = o.GetKeyNode().Value
l = o.GetKeyNode().Line
v = vo.MapIndex(k).Interface().(low.HasValueNodeUntyped).GetValueNode().Value
}
values = append(values, fmt.Sprintf("%d:%s:%s", l, x, low.GenerateHashString(v)))
}
sort.Strings(values)
d = append(d, strings.Join(values, "||"))
default:
d = append(d, low.GenerateHashString(s.AdditionalProperties.Value))
}
}
if !s.Description.IsEmpty() {
d = append(d, fmt.Sprint(s.Description.Value))
}
if !s.ContentEncoding.IsEmpty() {
d = append(d, fmt.Sprint(s.ContentEncoding.Value))
}
if !s.ContentMediaType.IsEmpty() {
d = append(d, fmt.Sprint(s.ContentMediaType.Value))
}
if !s.Default.IsEmpty() {
d = append(d, low.GenerateHashString(s.Default.Value))
}
if !s.Nullable.IsEmpty() {
d = append(d, fmt.Sprint(s.Nullable.Value))
}
if !s.ReadOnly.IsEmpty() {
d = append(d, fmt.Sprint(s.ReadOnly.Value))
}
if !s.WriteOnly.IsEmpty() {
d = append(d, fmt.Sprint(s.WriteOnly.Value))
}
if !s.Deprecated.IsEmpty() {
d = append(d, fmt.Sprint(s.Deprecated.Value))
}
if !s.ExclusiveMaximum.IsEmpty() && s.ExclusiveMaximum.Value.IsA() {
d = append(d, fmt.Sprint(s.ExclusiveMaximum.Value.A))
}
if !s.ExclusiveMaximum.IsEmpty() && s.ExclusiveMaximum.Value.IsB() {
d = append(d, fmt.Sprint(s.ExclusiveMaximum.Value.B))
}
if !s.ExclusiveMinimum.IsEmpty() && s.ExclusiveMinimum.Value.IsA() {
d = append(d, fmt.Sprint(s.ExclusiveMinimum.Value.A))
}
if !s.ExclusiveMinimum.IsEmpty() && s.ExclusiveMinimum.Value.IsB() {
d = append(d, fmt.Sprint(s.ExclusiveMinimum.Value.B))
}
if !s.Type.IsEmpty() && s.Type.Value.IsA() {
d = append(d, fmt.Sprint(s.Type.Value.A))
}
if !s.Type.IsEmpty() && s.Type.Value.IsB() {
j := make([]string, len(s.Type.Value.B))
for h := range s.Type.Value.B {
j[h] = s.Type.Value.B[h].Value
}
sort.Strings(j)
d = append(d, strings.Join(j, "|"))
}
keys := make([]string, len(s.Required.Value))
for i := range s.Required.Value {
keys[i] = s.Required.Value[i].Value
}
sort.Strings(keys)
d = append(d, keys...)
keys = make([]string, len(s.Enum.Value))
for i := range s.Enum.Value {
keys[i] = fmt.Sprint(s.Enum.Value[i].Value)
}
sort.Strings(keys)
d = append(d, keys...)
for i := range s.Enum.Value {
d = append(d, fmt.Sprint(s.Enum.Value[i].Value))
}
propKeys := make([]string, len(s.Properties.Value))
z := 0
for i := range s.Properties.Value {
propKeys[z] = i.Value
z++
}
sort.Strings(propKeys)
for k := range propKeys {
d = append(d, low.GenerateHashString(s.FindProperty(propKeys[k]).Value))
}
if s.XML.Value != nil {
d = append(d, low.GenerateHashString(s.XML.Value))
}
if s.ExternalDocs.Value != nil {
d = append(d, low.GenerateHashString(s.ExternalDocs.Value))
}
if s.Discriminator.Value != nil {
d = append(d, low.GenerateHashString(s.Discriminator.Value))
}
// hash polymorphic data
if len(s.OneOf.Value) > 0 {
oneOfKeys := make([]string, len(s.OneOf.Value))
oneOfEntities := make(map[string]*SchemaProxy)
z = 0
for i := range s.OneOf.Value {
g := s.OneOf.Value[i].Value
r := low.GenerateHashString(g)
oneOfEntities[r] = g
oneOfKeys[z] = r
z++
}
sort.Strings(oneOfKeys)
for k := range oneOfKeys {
d = append(d, low.GenerateHashString(oneOfEntities[oneOfKeys[k]]))
}
}
if len(s.AllOf.Value) > 0 {
allOfKeys := make([]string, len(s.AllOf.Value))
allOfEntities := make(map[string]*SchemaProxy)
z = 0
for i := range s.AllOf.Value {
g := s.AllOf.Value[i].Value
r := low.GenerateHashString(g)
allOfEntities[r] = g
allOfKeys[z] = r
z++
}
sort.Strings(allOfKeys)
for k := range allOfKeys {
d = append(d, low.GenerateHashString(allOfEntities[allOfKeys[k]]))
}
}
if len(s.AnyOf.Value) > 0 {
anyOfKeys := make([]string, len(s.AnyOf.Value))
anyOfEntities := make(map[string]*SchemaProxy)
z = 0
for i := range s.AnyOf.Value {
g := s.AnyOf.Value[i].Value
r := low.GenerateHashString(g)
anyOfEntities[r] = g
anyOfKeys[z] = r
z++
}
sort.Strings(anyOfKeys)
for k := range anyOfKeys {
d = append(d, low.GenerateHashString(anyOfEntities[anyOfKeys[k]]))
}
}
if !s.Not.IsEmpty() {
d = append(d, low.GenerateHashString(s.Not.Value))
}
// check if items is a schema or a bool.
if !s.Items.IsEmpty() && s.Items.Value.IsA() {
d = append(d, low.GenerateHashString(s.Items.Value.A))
}
if !s.Items.IsEmpty() && s.Items.Value.IsB() {
d = append(d, fmt.Sprint(s.Items.Value.B))
}
// 3.1 only props
if !s.If.IsEmpty() {
d = append(d, low.GenerateHashString(s.If.Value))
}
if !s.Else.IsEmpty() {
d = append(d, low.GenerateHashString(s.Else.Value))
}
if !s.Then.IsEmpty() {
d = append(d, low.GenerateHashString(s.Then.Value))
}
if !s.PropertyNames.IsEmpty() {
d = append(d, low.GenerateHashString(s.PropertyNames.Value))
}
if !s.UnevaluatedProperties.IsEmpty() {
d = append(d, low.GenerateHashString(s.UnevaluatedProperties.Value))
}
if !s.UnevaluatedItems.IsEmpty() {
d = append(d, low.GenerateHashString(s.UnevaluatedItems.Value))
}
depSchemasKeys := make([]string, len(s.DependentSchemas.Value))
z = 0
for i := range s.DependentSchemas.Value {
depSchemasKeys[z] = i.Value
z++
}
sort.Strings(depSchemasKeys)
for k := range depSchemasKeys {
d = append(d, low.GenerateHashString(s.FindDependentSchema(depSchemasKeys[k]).Value))
}
patternPropsKeys := make([]string, len(s.PatternProperties.Value))
z = 0
for i := range s.PatternProperties.Value {
patternPropsKeys[z] = i.Value
z++
}
sort.Strings(patternPropsKeys)
for k := range patternPropsKeys {
d = append(d, low.GenerateHashString(s.FindPatternProperty(patternPropsKeys[k]).Value))
}
if len(s.PrefixItems.Value) > 0 {
itemsKeys := make([]string, len(s.PrefixItems.Value))
itemsEntities := make(map[string]*SchemaProxy)
z = 0
for i := range s.PrefixItems.Value {
g := s.PrefixItems.Value[i].Value
r := low.GenerateHashString(g)
itemsEntities[r] = g
itemsKeys[z] = r
z++
}
sort.Strings(itemsKeys)
for k := range itemsKeys {
d = append(d, low.GenerateHashString(itemsEntities[itemsKeys[k]]))
}
}
// add extensions to hash
keys = make([]string, len(s.Extensions))
z = 0
for k := range s.Extensions {
keys[z] = fmt.Sprintf("%s-%x", k.Value, sha256.Sum256([]byte(fmt.Sprint(s.Extensions[k].Value))))
z++
}
sort.Strings(keys)
d = append(d, keys...)
if s.Example.Value != nil {
d = append(d, low.GenerateHashString(s.Example.Value))
}
// contains
if !s.Contains.IsEmpty() {
d = append(d, low.GenerateHashString(s.Contains.Value))
}
if !s.MinContains.IsEmpty() {
d = append(d, fmt.Sprint(s.MinContains.Value))
}
if !s.MaxContains.IsEmpty() {
d = append(d, fmt.Sprint(s.MaxContains.Value))
}
if !s.Examples.IsEmpty() {
var xph []string
for w := range s.Examples.Value {
xph = append(xph, low.GenerateHashString(s.Examples.Value[w].Value))
}
sort.Strings(xph)
d = append(d, strings.Join(xph, "|"))
}
return sha256.Sum256([]byte(strings.Join(d, "|")))
}
// FindProperty will return a ValueReference pointer containing a SchemaProxy pointer
// from a property key name. if found
func (s *Schema) FindProperty(name string) *low.ValueReference[*SchemaProxy] {
return low.FindItemInMap[*SchemaProxy](name, s.Properties.Value)
}
// FindDependentSchema will return a ValueReference pointer containing a SchemaProxy pointer
// from a dependent schema key name. if found (3.1+ only)
func (s *Schema) FindDependentSchema(name string) *low.ValueReference[*SchemaProxy] {
return low.FindItemInMap[*SchemaProxy](name, s.DependentSchemas.Value)
}
// FindPatternProperty will return a ValueReference pointer containing a SchemaProxy pointer
// from a pattern property key name. if found (3.1+ only)
func (s *Schema) FindPatternProperty(name string) *low.ValueReference[*SchemaProxy] {
return low.FindItemInMap[*SchemaProxy](name, s.PatternProperties.Value)
}
// GetExtensions returns all extensions for Schema
func (s *Schema) GetExtensions() map[low.KeyReference[string]]low.ValueReference[any] {
return s.Extensions
}
// Build will perform a number of operations.
// Extraction of the following happens in this method:
// - Extensions
// - Type
// - ExclusiveMinimum and ExclusiveMaximum
// - Examples
// - AdditionalProperties
// - Discriminator
// - ExternalDocs
// - XML
// - Properties
// - AllOf, OneOf, AnyOf
// - Not
// - Items
// - PrefixItems
// - If
// - Else
// - Then
// - DependentSchemas
// - PatternProperties
// - PropertyNames
// - UnevaluatedItems
// - UnevaluatedProperties
func (s *Schema) Build(root *yaml.Node, idx *index.SpecIndex) error {
s.Reference = new(low.Reference)
if h, _, _ := utils.IsNodeRefValue(root); h {
ref, err := low.LocateRefNode(root, idx)
if ref != nil {
root = ref
if err != nil {
if !idx.AllowCircularReferenceResolving() {
return fmt.Errorf("build schema failed: %s", err.Error())
}
}
} else {
return fmt.Errorf("build schema failed: reference cannot be found: '%s', line %d, col %d",
root.Content[1].Value, root.Content[1].Line, root.Content[1].Column)
}
}
// Build model using possibly dereferenced root
if err := low.BuildModel(root, s); err != nil {
return err
}
s.extractExtensions(root)
// determine schema type, singular (3.0) or multiple (3.1), use a variable value
_, typeLabel, typeValue := utils.FindKeyNodeFullTop(TypeLabel, root.Content)
if typeValue != nil {
if utils.IsNodeStringValue(typeValue) {
s.Type = low.NodeReference[SchemaDynamicValue[string, []low.ValueReference[string]]]{
KeyNode: typeLabel,
ValueNode: typeValue,
Value: SchemaDynamicValue[string, []low.ValueReference[string]]{N: 0, A: typeValue.Value},
}
}
if utils.IsNodeArray(typeValue) {
var refs []low.ValueReference[string]
for r := range typeValue.Content {
refs = append(refs, low.ValueReference[string]{
Value: typeValue.Content[r].Value,
ValueNode: typeValue.Content[r],
})
}
s.Type = low.NodeReference[SchemaDynamicValue[string, []low.ValueReference[string]]]{
KeyNode: typeLabel,
ValueNode: typeValue,
Value: SchemaDynamicValue[string, []low.ValueReference[string]]{N: 1, B: refs},
}
}
}
// determine exclusive minimum type, bool (3.0) or int (3.1)
_, exMinLabel, exMinValue := utils.FindKeyNodeFullTop(ExclusiveMinimumLabel, root.Content)
if exMinValue != nil {
if utils.IsNodeBoolValue(exMinValue) {
val, _ := strconv.ParseBool(exMinValue.Value)
s.ExclusiveMinimum = low.NodeReference[*SchemaDynamicValue[bool, int64]]{
KeyNode: exMinLabel,
ValueNode: exMinValue,
Value: &SchemaDynamicValue[bool, int64]{N: 0, A: val},
}
}
if utils.IsNodeIntValue(exMinValue) {
val, _ := strconv.ParseInt(exMinValue.Value, 10, 64)
s.ExclusiveMinimum = low.NodeReference[*SchemaDynamicValue[bool, int64]]{
KeyNode: exMinLabel,
ValueNode: exMinValue,
Value: &SchemaDynamicValue[bool, int64]{N: 1, B: val},
}
}
}
// determine exclusive maximum type, bool (3.0) or int (3.1)
_, exMaxLabel, exMaxValue := utils.FindKeyNodeFullTop(ExclusiveMaximumLabel, root.Content)
if exMaxValue != nil {
if utils.IsNodeBoolValue(exMaxValue) {
val, _ := strconv.ParseBool(exMaxValue.Value)
s.ExclusiveMaximum = low.NodeReference[*SchemaDynamicValue[bool, int64]]{
KeyNode: exMaxLabel,
ValueNode: exMaxValue,
Value: &SchemaDynamicValue[bool, int64]{N: 0, A: val},
}
}
if utils.IsNodeIntValue(exMaxValue) {
val, _ := strconv.ParseInt(exMaxValue.Value, 10, 64)
s.ExclusiveMaximum = low.NodeReference[*SchemaDynamicValue[bool, int64]]{
KeyNode: exMaxLabel,
ValueNode: exMaxValue,
Value: &SchemaDynamicValue[bool, int64]{N: 1, B: val},
}
}
}
// handle schema reference type if set. (3.1)
_, schemaRefLabel, schemaRefNode := utils.FindKeyNodeFullTop(SchemaTypeLabel, root.Content)
if schemaRefNode != nil {
s.SchemaTypeRef = low.NodeReference[string]{
Value: schemaRefNode.Value, KeyNode: schemaRefLabel, ValueNode: schemaRefLabel,
}
}
// handle example if set. (3.0)
_, expLabel, expNode := utils.FindKeyNodeFull(ExampleLabel, root.Content)
if expNode != nil {
s.Example = low.NodeReference[any]{Value: ExtractExampleValue(expNode), KeyNode: expLabel, ValueNode: expNode}
}
// handle examples if set.(3.1)
_, expArrLabel, expArrNode := utils.FindKeyNodeFullTop(ExamplesLabel, root.Content)
if expArrNode != nil {
if utils.IsNodeArray(expArrNode) {
var examples []low.ValueReference[any]
for i := range expArrNode.Content {
examples = append(examples, low.ValueReference[any]{Value: ExtractExampleValue(expArrNode.Content[i]), ValueNode: expArrNode.Content[i]})
}
s.Examples = low.NodeReference[[]low.ValueReference[any]]{
Value: examples,
ValueNode: expArrNode,
KeyNode: expArrLabel,
}
}
}
_, addPLabel, addPNode := utils.FindKeyNodeFullTop(AdditionalPropertiesLabel, root.Content)
if addPNode != nil {
if utils.IsNodeMap(addPNode) || utils.IsNodeArray(addPNode) {
// check if this is a reference, or an inline schema.
isRef, _, _ := utils.IsNodeRefValue(addPNode)
var sp *SchemaProxy
// now check if this object has a 'type' if so, it's a schema, if not... it's a random
// object, and we should treat it as a raw map.
if _, v := utils.FindKeyNodeTop(TypeLabel, addPNode.Content); v != nil {
sp = &SchemaProxy{
kn: addPLabel,
vn: addPNode,
idx: idx,
}
}
if isRef {
_, vn := utils.FindKeyNodeTop("$ref", addPNode.Content)
sp = &SchemaProxy{
kn: addPLabel,
vn: addPNode,
idx: idx,
isReference: true,
referenceLookup: vn.Value,
}
}
// if this is a reference, or a schema, we're done.
if sp != nil {
s.AdditionalProperties = low.NodeReference[any]{Value: sp, KeyNode: addPLabel, ValueNode: addPNode}
} else {
// if this is a map, collect all the keys and values.
if utils.IsNodeMap(addPNode) {
addProps := make(map[low.KeyReference[string]]low.ValueReference[any])
var label string
for g := range addPNode.Content {
if g%2 == 0 {
label = addPNode.Content[g].Value
continue
} else {
addProps[low.KeyReference[string]{Value: label, KeyNode: addPNode.Content[g-1]}] =
low.ValueReference[any]{Value: addPNode.Content[g].Value, ValueNode: addPNode.Content[g]}
}
}
s.AdditionalProperties = low.NodeReference[any]{Value: addProps, KeyNode: addPLabel, ValueNode: addPNode}
}
// if the node is an array, extract everything into a trackable structure
if utils.IsNodeArray(addPNode) {
var addProps []low.ValueReference[any]
// if this is an array or maps, encode the map items correctly.
for i := range addPNode.Content {
if utils.IsNodeMap(addPNode.Content[i]) {
var prop map[string]any
addPNode.Content[i].Decode(&prop)
addProps = append(addProps,
low.ValueReference[any]{Value: prop, ValueNode: addPNode.Content[i]})
} else {
addProps = append(addProps,
low.ValueReference[any]{Value: addPNode.Content[i].Value, ValueNode: addPNode.Content[i]})
}
}
s.AdditionalProperties =
low.NodeReference[any]{Value: addProps, KeyNode: addPLabel, ValueNode: addPNode}
}
}
}
if utils.IsNodeBoolValue(addPNode) {
b, _ := strconv.ParseBool(addPNode.Value)
s.AdditionalProperties = low.NodeReference[any]{Value: b, KeyNode: addPLabel, ValueNode: addPNode}
}
}
// handle discriminator if set.
_, discLabel, discNode := utils.FindKeyNodeFullTop(DiscriminatorLabel, root.Content)
if discNode != nil {
var discriminator Discriminator
_ = low.BuildModel(discNode, &discriminator)
s.Discriminator = low.NodeReference[*Discriminator]{Value: &discriminator, KeyNode: discLabel, ValueNode: discNode}
}
// handle externalDocs if set.
_, extDocLabel, extDocNode := utils.FindKeyNodeFullTop(ExternalDocsLabel, root.Content)
if extDocNode != nil {
var exDoc ExternalDoc
_ = low.BuildModel(extDocNode, &exDoc)
_ = exDoc.Build(extDocNode, idx) // throws no errors, can't check for one.
s.ExternalDocs = low.NodeReference[*ExternalDoc]{Value: &exDoc, KeyNode: extDocLabel, ValueNode: extDocNode}
}
// handle xml if set.
_, xmlLabel, xmlNode := utils.FindKeyNodeFullTop(XMLLabel, root.Content)
if xmlNode != nil {
var xml XML
_ = low.BuildModel(xmlNode, &xml)
// extract extensions if set.
_ = xml.Build(xmlNode, idx) // returns no errors, can't check for one.
s.XML = low.NodeReference[*XML]{Value: &xml, KeyNode: xmlLabel, ValueNode: xmlNode}
}
// handle properties
props, err := buildPropertyMap(root, idx, PropertiesLabel)
if err != nil {
return err
}
if props != nil {
s.Properties = *props
}
// handle dependent schemas
props, err = buildPropertyMap(root, idx, DependentSchemasLabel)
if err != nil {
return err
}
if props != nil {
s.DependentSchemas = *props
}
// handle pattern properties
props, err = buildPropertyMap(root, idx, PatternPropertiesLabel)
if err != nil {
return err
}
if props != nil {
s.PatternProperties = *props
}
// check items type for schema or bool (3.1 only)
itemsIsBool := false
itemsBoolValue := false
_, itemsLabel, itemsValue := utils.FindKeyNodeFullTop(ItemsLabel, root.Content)
if itemsValue != nil {
if utils.IsNodeBoolValue(itemsValue) {
itemsIsBool = true
itemsBoolValue, _ = strconv.ParseBool(itemsValue.Value)
}
}
if itemsIsBool {
s.Items = low.NodeReference[*SchemaDynamicValue[*SchemaProxy, bool]]{
Value: &SchemaDynamicValue[*SchemaProxy, bool]{
B: itemsBoolValue,
N: 1,
},
KeyNode: itemsLabel,
ValueNode: itemsValue,
}
}
var allOf, anyOf, oneOf, prefixItems []low.ValueReference[*SchemaProxy]
var items, not, contains, sif, selse, sthen, propertyNames, unevalItems, unevalProperties low.ValueReference[*SchemaProxy]
_, allOfLabel, allOfValue := utils.FindKeyNodeFullTop(AllOfLabel, root.Content)
_, anyOfLabel, anyOfValue := utils.FindKeyNodeFullTop(AnyOfLabel, root.Content)
_, oneOfLabel, oneOfValue := utils.FindKeyNodeFullTop(OneOfLabel, root.Content)
_, notLabel, notValue := utils.FindKeyNodeFullTop(NotLabel, root.Content)
_, prefixItemsLabel, prefixItemsValue := utils.FindKeyNodeFullTop(PrefixItemsLabel, root.Content)
_, containsLabel, containsValue := utils.FindKeyNodeFullTop(ContainsLabel, root.Content)
_, sifLabel, sifValue := utils.FindKeyNodeFullTop(IfLabel, root.Content)
_, selseLabel, selseValue := utils.FindKeyNodeFullTop(ElseLabel, root.Content)
_, sthenLabel, sthenValue := utils.FindKeyNodeFullTop(ThenLabel, root.Content)
_, propNamesLabel, propNamesValue := utils.FindKeyNodeFullTop(PropertyNamesLabel, root.Content)
_, unevalItemsLabel, unevalItemsValue := utils.FindKeyNodeFullTop(UnevaluatedItemsLabel, root.Content)
_, unevalPropsLabel, unevalPropsValue := utils.FindKeyNodeFullTop(UnevaluatedPropertiesLabel, root.Content)
errorChan := make(chan error)
allOfChan := make(chan schemaProxyBuildResult)
anyOfChan := make(chan schemaProxyBuildResult)
oneOfChan := make(chan schemaProxyBuildResult)
itemsChan := make(chan schemaProxyBuildResult)
prefixItemsChan := make(chan schemaProxyBuildResult)
notChan := make(chan schemaProxyBuildResult)
containsChan := make(chan schemaProxyBuildResult)
ifChan := make(chan schemaProxyBuildResult)
elseChan := make(chan schemaProxyBuildResult)
thenChan := make(chan schemaProxyBuildResult)
propNamesChan := make(chan schemaProxyBuildResult)
unevalItemsChan := make(chan schemaProxyBuildResult)
unevalPropsChan := make(chan schemaProxyBuildResult)
totalBuilds := countSubSchemaItems(allOfValue) +
countSubSchemaItems(anyOfValue) +
countSubSchemaItems(oneOfValue) +
countSubSchemaItems(prefixItemsValue)
if allOfValue != nil {
go buildSchema(allOfChan, allOfLabel, allOfValue, errorChan, idx)
}
if anyOfValue != nil {
go buildSchema(anyOfChan, anyOfLabel, anyOfValue, errorChan, idx)
}
if oneOfValue != nil {
go buildSchema(oneOfChan, oneOfLabel, oneOfValue, errorChan, idx)
}
if prefixItemsValue != nil {
go buildSchema(prefixItemsChan, prefixItemsLabel, prefixItemsValue, errorChan, idx)
}
if notValue != nil {
totalBuilds++
go buildSchema(notChan, notLabel, notValue, errorChan, idx)
}
if containsValue != nil {
totalBuilds++
go buildSchema(containsChan, containsLabel, containsValue, errorChan, idx)
}
if !itemsIsBool && itemsValue != nil {
totalBuilds++
go buildSchema(itemsChan, itemsLabel, itemsValue, errorChan, idx)
}
if sifValue != nil {
totalBuilds++
go buildSchema(ifChan, sifLabel, sifValue, errorChan, idx)
}
if selseValue != nil {
totalBuilds++
go buildSchema(elseChan, selseLabel, selseValue, errorChan, idx)
}
if sthenValue != nil {
totalBuilds++
go buildSchema(thenChan, sthenLabel, sthenValue, errorChan, idx)
}
if propNamesValue != nil {
totalBuilds++
go buildSchema(propNamesChan, propNamesLabel, propNamesValue, errorChan, idx)
}
if unevalItemsValue != nil {
totalBuilds++
go buildSchema(unevalItemsChan, unevalItemsLabel, unevalItemsValue, errorChan, idx)
}
if unevalPropsValue != nil {
totalBuilds++
go buildSchema(unevalPropsChan, unevalPropsLabel, unevalPropsValue, errorChan, idx)
}
completeCount := 0
for completeCount < totalBuilds {
select {
case e := <-errorChan:
return e
case r := <-allOfChan:
completeCount++
allOf = append(allOf, r.v)
case r := <-anyOfChan:
completeCount++
anyOf = append(anyOf, r.v)
case r := <-oneOfChan:
completeCount++
oneOf = append(oneOf, r.v)
case r := <-itemsChan:
completeCount++
items = r.v
case r := <-prefixItemsChan:
completeCount++
prefixItems = append(prefixItems, r.v)
case r := <-notChan:
completeCount++
not = r.v
case r := <-containsChan:
completeCount++
contains = r.v
case r := <-ifChan:
completeCount++
sif = r.v
case r := <-elseChan:
completeCount++
selse = r.v
case r := <-thenChan:
completeCount++
sthen = r.v
case r := <-propNamesChan:
completeCount++
propertyNames = r.v
case r := <-unevalItemsChan:
completeCount++
unevalItems = r.v
case r := <-unevalPropsChan:
completeCount++
unevalProperties = r.v
}
}
if len(anyOf) > 0 {
s.AnyOf = low.NodeReference[[]low.ValueReference[*SchemaProxy]]{
Value: anyOf,
KeyNode: anyOfLabel,
ValueNode: anyOfValue,
}
}
if len(oneOf) > 0 {
s.OneOf = low.NodeReference[[]low.ValueReference[*SchemaProxy]]{
Value: oneOf,
KeyNode: oneOfLabel,
ValueNode: oneOfValue,
}
}
if len(allOf) > 0 {
s.AllOf = low.NodeReference[[]low.ValueReference[*SchemaProxy]]{
Value: allOf,
KeyNode: allOfLabel,
ValueNode: allOfValue,
}
}
if !not.IsEmpty() {
s.Not = low.NodeReference[*SchemaProxy]{
Value: not.Value,
KeyNode: notLabel,
ValueNode: notValue,
}
}
if !itemsIsBool && !items.IsEmpty() {
s.Items = low.NodeReference[*SchemaDynamicValue[*SchemaProxy, bool]]{
Value: &SchemaDynamicValue[*SchemaProxy, bool]{
A: items.Value,
},
KeyNode: itemsLabel,
ValueNode: itemsValue,
}
}
if len(prefixItems) > 0 {
s.PrefixItems = low.NodeReference[[]low.ValueReference[*SchemaProxy]]{
Value: prefixItems,
KeyNode: prefixItemsLabel,
ValueNode: prefixItemsValue,
}
}
if !contains.IsEmpty() {
s.Contains = low.NodeReference[*SchemaProxy]{
Value: contains.Value,
KeyNode: containsLabel,
ValueNode: containsValue,
}
}
if !sif.IsEmpty() {
s.If = low.NodeReference[*SchemaProxy]{
Value: sif.Value,
KeyNode: sifLabel,
ValueNode: sifValue,
}
}
if !selse.IsEmpty() {
s.Else = low.NodeReference[*SchemaProxy]{
Value: selse.Value,
KeyNode: selseLabel,
ValueNode: selseValue,
}
}
if !sthen.IsEmpty() {
s.Then = low.NodeReference[*SchemaProxy]{
Value: sthen.Value,
KeyNode: sthenLabel,
ValueNode: sthenValue,
}
}
if !propertyNames.IsEmpty() {
s.PropertyNames = low.NodeReference[*SchemaProxy]{
Value: propertyNames.Value,
KeyNode: propNamesLabel,
ValueNode: propNamesValue,
}
}
if !unevalItems.IsEmpty() {
s.UnevaluatedItems = low.NodeReference[*SchemaProxy]{
Value: unevalItems.Value,
KeyNode: unevalItemsLabel,
ValueNode: unevalItemsValue,
}
}
if !unevalProperties.IsEmpty() {
s.UnevaluatedProperties = low.NodeReference[*SchemaProxy]{
Value: unevalProperties.Value,
KeyNode: unevalPropsLabel,
ValueNode: unevalPropsValue,
}
}
return nil
}
func buildPropertyMap(root *yaml.Node, idx *index.SpecIndex, label string) (*low.NodeReference[map[low.KeyReference[string]]low.ValueReference[*SchemaProxy]], error) {
// for property, build in a new thread!
bChan := make(chan schemaProxyBuildResult)
buildProperty := func(label *yaml.Node, value *yaml.Node, c chan schemaProxyBuildResult, isRef bool,
refString string,
) {
c <- schemaProxyBuildResult{
k: low.KeyReference[string]{
KeyNode: label,
Value: label.Value,
},
v: low.ValueReference[*SchemaProxy]{
Value: &SchemaProxy{kn: label, vn: value, idx: idx, isReference: isRef, referenceLookup: refString},
ValueNode: value,
},
}
}
_, propLabel, propsNode := utils.FindKeyNodeFullTop(label, root.Content)
if propsNode != nil {
propertyMap := make(map[low.KeyReference[string]]low.ValueReference[*SchemaProxy])
var currentProp *yaml.Node
totalProps := 0
for i, prop := range propsNode.Content {
if i%2 == 0 {
currentProp = prop
continue
}
// check our prop isn't reference
isRef := false
refString := ""
if h, _, l := utils.IsNodeRefValue(prop); h {
ref, _ := low.LocateRefNode(prop, idx)
if ref != nil {
isRef = true
prop = ref
refString = l
} else {
return nil, fmt.Errorf("schema properties build failed: cannot find reference %s, line %d, col %d",
prop.Content[1].Value, prop.Content[1].Line, prop.Content[1].Column)
}
}
totalProps++
go buildProperty(currentProp, prop, bChan, isRef, refString)
}
completedProps := 0
for completedProps < totalProps {
select {
case res := <-bChan:
completedProps++
propertyMap[res.k] = res.v
}
}
return &low.NodeReference[map[low.KeyReference[string]]low.ValueReference[*SchemaProxy]]{
Value: propertyMap,
KeyNode: propLabel,
ValueNode: propsNode,
}, nil
}
return nil, nil
}
// count the number of sub-schemas in a node.
func countSubSchemaItems(node *yaml.Node) int {
if utils.IsNodeMap(node) {
return 1
}
if utils.IsNodeArray(node) {
return len(node.Content)
}
return 0
}
// schema build result container used for async building.
type schemaProxyBuildResult struct {
k low.KeyReference[string]
v low.ValueReference[*SchemaProxy]
}
// extract extensions from schema
func (s *Schema) extractExtensions(root *yaml.Node) {
s.Extensions = low.ExtractExtensions(root)
}
// build out a child schema for parent schema.
func buildSchema(schemas chan schemaProxyBuildResult, labelNode, valueNode *yaml.Node, errors chan error, idx *index.SpecIndex) {
if valueNode != nil {
type buildResult struct {
res *low.ValueReference[*SchemaProxy]
idx int
}
syncChan := make(chan buildResult)
// build out a SchemaProxy for every sub-schema.
build := func(kn *yaml.Node, vn *yaml.Node, schemaIdx int, c chan buildResult,
isRef bool, refLocation string,
) {
// a proxy design works best here. polymorphism, pretty much guarantees that a sub-schema can
// take on circular references through polymorphism. Like the resolver, if we try and follow these
// journey's through hyperspace, we will end up creating endless amounts of threads, spinning off
// chasing down circles, that in turn spin up endless threads.
// In order to combat this, we need a schema proxy that will only resolve the schema when asked, and then
// it will only do it one level at a time.
sp := new(SchemaProxy)
sp.kn = kn
sp.vn = vn
sp.idx = idx
if isRef {
sp.referenceLookup = refLocation
sp.isReference = true
}
res := &low.ValueReference[*SchemaProxy]{
Value: sp,
ValueNode: vn,
}
c <- buildResult{
res: res,
idx: schemaIdx,
}
}
isRef := false
refLocation := ""
if utils.IsNodeMap(valueNode) {
h := false
if h, _, refLocation = utils.IsNodeRefValue(valueNode); h {
isRef = true
ref, _ := low.LocateRefNode(valueNode, idx)
if ref != nil {
valueNode = ref
} else {
errors <- fmt.Errorf("build schema failed: reference cannot be found: %s, line %d, col %d",
valueNode.Content[1].Value, valueNode.Content[1].Line, valueNode.Content[1].Column)
}
}
// this only runs once, however to keep things consistent, it makes sense to use the same async method
// that arrays will use.
go build(labelNode, valueNode, -1, syncChan, isRef, refLocation)
select {
case r := <-syncChan:
schemas <- schemaProxyBuildResult{
k: low.KeyReference[string]{
KeyNode: labelNode,
Value: labelNode.Value,
},
v: *r.res,
}
}
}
if utils.IsNodeArray(valueNode) {
refBuilds := 0
results := make([]*low.ValueReference[*SchemaProxy], len(valueNode.Content))
for i, vn := range valueNode.Content {
isRef = false
h := false
if h, _, refLocation = utils.IsNodeRefValue(vn); h {
isRef = true
ref, _ := low.LocateRefNode(vn, idx)
if ref != nil {
vn = ref
} else {
err := fmt.Errorf("build schema failed: reference cannot be found: %s, line %d, col %d",
vn.Content[1].Value, vn.Content[1].Line, vn.Content[1].Column)
errors <- err
return
}
}
refBuilds++
go build(vn, vn, i, syncChan, isRef, refLocation)
}
completedBuilds := 0
for completedBuilds < refBuilds {
select {
case res := <-syncChan:
completedBuilds++
results[res.idx] = res.res
}
}
for _, r := range results {
schemas <- schemaProxyBuildResult{
k: low.KeyReference[string]{
KeyNode: labelNode,
Value: labelNode.Value,
},
v: *r,
}
}
}
}
}
// ExtractSchema will return a pointer to a NodeReference that contains a *SchemaProxy if successful. The function
// will specifically look for a key node named 'schema' and extract the value mapped to that key. If the operation
// fails then no NodeReference is returned and an error is returned instead.
func ExtractSchema(root *yaml.Node, idx *index.SpecIndex) (*low.NodeReference[*SchemaProxy], error) {
var schLabel, schNode *yaml.Node
errStr := "schema build failed: reference '%s' cannot be found at line %d, col %d"
isRef := false
refLocation := ""
if rf, rl, _ := utils.IsNodeRefValue(root); rf {
// locate reference in index.
isRef = true
ref, _ := low.LocateRefNode(root, idx)
if ref != nil {
schNode = ref
schLabel = rl
} else {
return nil, fmt.Errorf(errStr,
root.Content[1].Value, root.Content[1].Line, root.Content[1].Column)
}
} else {
_, schLabel, schNode = utils.FindKeyNodeFull(SchemaLabel, root.Content)
if schNode != nil {
h := false
if h, _, refLocation = utils.IsNodeRefValue(schNode); h {
isRef = true
ref, _ := low.LocateRefNode(schNode, idx)
if ref != nil {
schNode = ref
} else {
return nil, fmt.Errorf(errStr,
schNode.Content[1].Value, schNode.Content[1].Line, schNode.Content[1].Column)
}
}
}
}
if schNode != nil {
// check if schema has already been built.
schema := &SchemaProxy{kn: schLabel, vn: schNode, idx: idx, isReference: isRef, referenceLookup: refLocation}
return &low.NodeReference[*SchemaProxy]{Value: schema, KeyNode: schLabel, ValueNode: schNode, ReferenceNode: isRef,
Reference: refLocation}, nil
}
return nil, nil
}