Files
libopenapi/index/extract_refs.go
Dave Shanley 4a378de02e Fix: bug in index with description handling.
Issue for description being incorrectly picked up, is because index was collecting all descriptions, even if they were labels on schemas as reported in https://github.com/daveshanley/vacuum/issues/239
2023-02-27 11:05:18 -05:00

397 lines
16 KiB
Go

// Copyright 2023 Princess B33f Heavy Industries / Dave Shanley
// SPDX-License-Identifier: MIT
package index
import (
"errors"
"fmt"
"github.com/pb33f/libopenapi/utils"
"gopkg.in/yaml.v3"
"strings"
)
// ExtractRefs will return a deduplicated slice of references for every unique ref found in the document.
// The total number of refs, will generally be much higher, you can extract those from GetRawReferenceCount()
func (index *SpecIndex) ExtractRefs(node, parent *yaml.Node, seenPath []string, level int, poly bool, pName string) []*Reference {
if node == nil {
return nil
}
var found []*Reference
if len(node.Content) > 0 {
var prev, polyName string
for i, n := range node.Content {
if utils.IsNodeMap(n) || utils.IsNodeArray(n) {
level++
// check if we're using polymorphic values. These tend to create rabbit warrens of circular
// references if every single link is followed. We don't resolve polymorphic values.
isPoly, _ := index.checkPolymorphicNode(prev)
polyName = pName
if isPoly {
poly = true
if prev != "" {
polyName = prev
}
}
found = append(found, index.ExtractRefs(n, node, seenPath, level, poly, polyName)...)
}
// check if we're dealing with an inline schema definition, that isn't part of an array
// (which means it's being used as a value in an array, and it's not a label)
// https://github.com/pb33f/libopenapi/issues/76
if i%2 == 0 && n.Value == "schema" && !utils.IsNodeArray(node) && (i+1 < len(node.Content)) {
isRef, _, _ := utils.IsNodeRefValue(node.Content[i+1])
if isRef {
continue
}
ref := &Reference{
Node: node.Content[i+1],
Path: fmt.Sprintf("$.%s", strings.Join(seenPath, ".")),
}
index.allInlineSchemaDefinitions = append(index.allInlineSchemaDefinitions, ref)
// check if the schema is an object or an array,
// and if so, add it to the list of inline schema object definitions.
k, v := utils.FindKeyNodeTop("type", node.Content[i+1].Content)
if k != nil && v != nil {
if v.Value == "object" || v.Value == "array" {
index.allInlineSchemaObjectDefinitions = append(index.allInlineSchemaObjectDefinitions, ref)
}
}
}
if i%2 == 0 && n.Value == "$ref" {
// only look at scalar values, not maps (looking at you k8s)
if !utils.IsNodeStringValue(node.Content[i+1]) {
continue
}
index.linesWithRefs[n.Line] = true
fp := make([]string, len(seenPath))
for x, foundPathNode := range seenPath {
fp[x] = foundPathNode
}
value := node.Content[i+1].Value
segs := strings.Split(value, "/")
name := segs[len(segs)-1]
_, p := utils.ConvertComponentIdIntoFriendlyPathSearch(value)
ref := &Reference{
Definition: value,
Name: name,
Node: node,
Path: p,
}
// add to raw sequenced refs
index.rawSequencedRefs = append(index.rawSequencedRefs, ref)
// add ref by line number
refNameIndex := strings.LastIndex(value, "/")
refName := value[refNameIndex+1:]
if len(index.refsByLine[refName]) > 0 {
index.refsByLine[refName][n.Line] = true
} else {
v := make(map[int]bool)
v[n.Line] = true
index.refsByLine[refName] = v
}
// if this ref value has any siblings (node.Content is larger than two elements)
// then add to refs with siblings
if len(node.Content) > 2 {
copiedNode := *node
copied := Reference{
Definition: ref.Definition,
Name: ref.Name,
Node: &copiedNode,
Path: p,
}
// protect this data using a copy, prevent the resolver from destroying things.
index.refsWithSiblings[value] = copied
}
// if this is a polymorphic reference, we're going to leave it out
// allRefs. We don't ever want these resolved, so instead of polluting
// the timeline, we will keep each poly ref in its own collection for later
// analysis.
if poly {
index.polymorphicRefs[value] = ref
// index each type
switch pName {
case "anyOf":
index.polymorphicAnyOfRefs = append(index.polymorphicAnyOfRefs, ref)
case "allOf":
index.polymorphicAllOfRefs = append(index.polymorphicAllOfRefs, ref)
case "oneOf":
index.polymorphicOneOfRefs = append(index.polymorphicOneOfRefs, ref)
}
continue
}
// check if this is a dupe, if so, skip it, we don't care now.
if index.allRefs[value] != nil { // seen before, skip.
continue
}
if value == "" {
completedPath := fmt.Sprintf("$.%s", strings.Join(fp, "."))
indexError := &IndexingError{
Err: errors.New("schema reference is empty and cannot be processed"),
Node: node.Content[i+1],
Path: completedPath,
}
index.refErrors = append(index.refErrors, indexError)
continue
}
index.allRefs[value] = ref
found = append(found, ref)
}
if i%2 == 0 && n.Value != "$ref" && n.Value != "" {
nodePath := fmt.Sprintf("$.%s", strings.Join(seenPath, "."))
// capture descriptions and summaries
if n.Value == "description" {
// if the parent is a sequence, ignore.
if utils.IsNodeArray(node) {
continue
}
ref := &DescriptionReference{
Content: node.Content[i+1].Value,
Path: nodePath,
Node: node.Content[i+1],
IsSummary: false,
}
if !utils.IsNodeMap(ref.Node) {
index.allDescriptions = append(index.allDescriptions, ref)
index.descriptionCount++
}
}
if n.Value == "summary" {
var b *yaml.Node
if len(node.Content) == i+1 {
b = node.Content[i]
} else {
b = node.Content[i+1]
}
ref := &DescriptionReference{
Content: b.Value,
Path: nodePath,
Node: b,
IsSummary: true,
}
index.allSummaries = append(index.allSummaries, ref)
index.summaryCount++
}
// capture security requirement references (these are not traditional references, but they
// are used as a look-up. This is the only exception to the design.
if n.Value == "security" {
var b *yaml.Node
if len(node.Content) == i+1 {
b = node.Content[i]
} else {
b = node.Content[i+1]
}
if utils.IsNodeArray(b) {
var secKey string
for k := range b.Content {
if utils.IsNodeMap(b.Content[k]) {
for g := range b.Content[k].Content {
if g%2 == 0 {
secKey = b.Content[k].Content[g].Value
continue
}
if utils.IsNodeArray(b.Content[k].Content[g]) {
var refMap map[string][]*Reference
if index.securityRequirementRefs[secKey] == nil {
index.securityRequirementRefs[secKey] = make(map[string][]*Reference)
refMap = index.securityRequirementRefs[secKey]
} else {
refMap = index.securityRequirementRefs[secKey]
}
for r := range b.Content[k].Content[g].Content {
var refs []*Reference
if refMap[b.Content[k].Content[g].Content[r].Value] != nil {
refs = refMap[b.Content[k].Content[g].Content[r].Value]
}
refs = append(refs, &Reference{
Definition: b.Content[k].Content[g].Content[r].Value,
Path: fmt.Sprintf("%s.security[%d].%s[%d]", nodePath, k, secKey, r),
Node: b.Content[k].Content[g].Content[r],
})
index.securityRequirementRefs[secKey][b.Content[k].Content[g].Content[r].Value] = refs
}
}
}
}
}
}
}
// capture enums
if n.Value == "enum" {
// all enums need to have a type, extract the type from the node where the enum was found.
_, enumKeyValueNode := utils.FindKeyNodeTop("type", node.Content)
if enumKeyValueNode != nil {
ref := &EnumReference{
Path: nodePath,
Node: node.Content[i+1],
Type: enumKeyValueNode,
SchemaNode: node,
ParentNode: parent,
}
index.allEnums = append(index.allEnums, ref)
index.enumCount++
}
}
// capture all objects with properties
if n.Value == "properties" {
_, typeKeyValueNode := utils.FindKeyNodeTop("type", node.Content)
if typeKeyValueNode != nil {
isObject := false
if typeKeyValueNode.Value == "object" {
isObject = true
}
for _, v := range typeKeyValueNode.Content {
if v.Value == "object" {
isObject = true
}
}
if isObject {
index.allObjectsWithProperties = append(index.allObjectsWithProperties, &ObjectReference{
Path: nodePath,
Node: node,
ParentNode: parent,
})
}
}
}
seenPath = append(seenPath, n.Value)
prev = n.Value
}
// if next node is map, don't add segment.
if i < len(node.Content)-1 {
next := node.Content[i+1]
if i%2 != 0 && next != nil && !utils.IsNodeArray(next) && !utils.IsNodeMap(next) {
seenPath = seenPath[:len(seenPath)-1]
}
}
}
if len(seenPath) > 0 {
seenPath = seenPath[:len(seenPath)-1]
}
}
if len(seenPath) > 0 {
seenPath = seenPath[:len(seenPath)-1]
}
index.refCount = len(index.allRefs)
return found
}
// ExtractComponentsFromRefs returns located components from references. The returned nodes from here
// can be used for resolving as they contain the actual object properties.
func (index *SpecIndex) ExtractComponentsFromRefs(refs []*Reference) []*Reference {
var found []*Reference
//run this async because when things get recursive, it can take a while
c := make(chan bool)
locate := func(ref *Reference, refIndex int, sequence []*ReferenceMapped) {
located := index.FindComponent(ref.Definition, ref.Node)
if located != nil {
index.refLock.Lock()
if index.allMappedRefs[ref.Definition] == nil {
found = append(found, located)
index.allMappedRefs[ref.Definition] = located
sequence[refIndex] = &ReferenceMapped{
Reference: located,
Definition: ref.Definition,
}
}
index.refLock.Unlock()
} else {
_, path := utils.ConvertComponentIdIntoFriendlyPathSearch(ref.Definition)
indexError := &IndexingError{
Err: fmt.Errorf("component '%s' does not exist in the specification", ref.Definition),
Node: ref.Node,
Path: path,
}
index.refErrors = append(index.refErrors, indexError)
}
c <- true
}
var refsToCheck []*Reference
for _, ref := range refs {
// check reference for backslashes (hah yeah seen this too!)
if strings.Contains(ref.Definition, "\\") { // this was from blazemeter.com haha!
_, path := utils.ConvertComponentIdIntoFriendlyPathSearch(ref.Definition)
indexError := &IndexingError{
Err: fmt.Errorf("component '%s' contains a backslash '\\'. It's not valid", ref.Definition),
Node: ref.Node,
Path: path,
}
index.refErrors = append(index.refErrors, indexError)
continue
}
refsToCheck = append(refsToCheck, ref)
}
mappedRefsInSequence := make([]*ReferenceMapped, len(refsToCheck))
for r := range refsToCheck {
// expand our index of all mapped refs
go locate(refsToCheck[r], r, mappedRefsInSequence)
}
completedRefs := 0
for completedRefs < len(refsToCheck) {
select {
case <-c:
completedRefs++
}
}
for m := range mappedRefsInSequence {
if mappedRefsInSequence[m] != nil {
index.allMappedRefsSequenced = append(index.allMappedRefsSequenced, mappedRefsInSequence[m])
}
}
return found
}