Files
libopenapi/index/resolver.go
quobix 8717b3cd33 An enormous amount of surgery on the low level model.
Every `Build()` method now requires a `context.Context`. This is so the rolodex knows where to resolve from when locating relative links. Without knowing where we are, there is no way to resolve anything. This new mechanism allows the model to recurse across as many files as required to locate references, without loosing track of where we are in the process.

Signed-off-by: quobix <dave@quobix.com>
2023-10-23 15:04:34 -04:00

626 lines
18 KiB
Go

// Copyright 2022 Dave Shanley / Quobix
// SPDX-License-Identifier: MIT
package index
import (
"fmt"
"github.com/pb33f/libopenapi/utils"
"gopkg.in/yaml.v3"
"net/url"
"path/filepath"
"strings"
)
// ResolvingError represents an issue the resolver had trying to stitch the tree together.
type ResolvingError struct {
// ErrorRef is the error thrown by the resolver
ErrorRef error
// Node is the *yaml.Node reference that contains the resolving error
Node *yaml.Node
// Path is the shortened journey taken by the resolver
Path string
// CircularReference is set if the error is a reference to the circular reference.
CircularReference *CircularReferenceResult
}
func (r *ResolvingError) Error() string {
return fmt.Sprintf("%s: %s [%d:%d]", r.ErrorRef.Error(),
r.Path, r.Node.Line, r.Node.Column)
}
// Resolver will use a *index.SpecIndex to stitch together a resolved root tree using all the discovered
// references in the doc.
type Resolver struct {
specIndex *SpecIndex
resolvedRoot *yaml.Node
resolvingErrors []*ResolvingError
circularReferences []*CircularReferenceResult
ignoredPolyReferences []*CircularReferenceResult
ignoredArrayReferences []*CircularReferenceResult
referencesVisited int
indexesVisited int
journeysTaken int
relativesSeen int
IgnorePoly bool
IgnoreArray bool
}
// NewResolver will create a new resolver from a *index.SpecIndex
func NewResolver(index *SpecIndex) *Resolver {
if index == nil {
return nil
}
r := &Resolver{
specIndex: index,
resolvedRoot: index.GetRootNode(),
}
index.resolver = r
return r
}
// GetIgnoredCircularPolyReferences returns all ignored circular references that are polymorphic
func (resolver *Resolver) GetIgnoredCircularPolyReferences() []*CircularReferenceResult {
return resolver.ignoredPolyReferences
}
// GetIgnoredCircularArrayReferences returns all ignored circular references that are arrays
func (resolver *Resolver) GetIgnoredCircularArrayReferences() []*CircularReferenceResult {
return resolver.ignoredArrayReferences
}
// GetResolvingErrors returns all errors found during resolving
func (resolver *Resolver) GetResolvingErrors() []*ResolvingError {
return resolver.resolvingErrors
}
// GetCircularErrors returns all circular reference errors found.
func (resolver *Resolver) GetCircularErrors() []*CircularReferenceResult {
return resolver.circularReferences
}
// GetPolymorphicCircularErrors returns all circular errors that stem from polymorphism
func (resolver *Resolver) GetPolymorphicCircularErrors() []*CircularReferenceResult {
var res []*CircularReferenceResult
for i := range resolver.circularReferences {
if !resolver.circularReferences[i].IsInfiniteLoop {
continue
}
if !resolver.circularReferences[i].IsPolymorphicResult {
continue
}
res = append(res, resolver.circularReferences[i])
}
return res
}
// GetNonPolymorphicCircularErrors returns all circular errors that DO NOT stem from polymorphism
func (resolver *Resolver) GetNonPolymorphicCircularErrors() []*CircularReferenceResult {
var res []*CircularReferenceResult
for i := range resolver.circularReferences {
if !resolver.circularReferences[i].IsInfiniteLoop {
continue
}
if !resolver.circularReferences[i].IsPolymorphicResult {
res = append(res, resolver.circularReferences[i])
}
}
return res
}
// IgnorePolymorphicCircularReferences will ignore any circular references that are polymorphic (oneOf, anyOf, allOf)
// This must be set before any resolving is done.
func (resolver *Resolver) IgnorePolymorphicCircularReferences() {
resolver.IgnorePoly = true
}
// IgnoreArrayCircularReferences will ignore any circular references that stem from arrays. This must be set before
// any resolving is done.
func (resolver *Resolver) IgnoreArrayCircularReferences() {
resolver.IgnoreArray = true
}
// GetJourneysTaken returns the number of journeys taken by the resolver
func (resolver *Resolver) GetJourneysTaken() int {
return resolver.journeysTaken
}
// GetReferenceVisited returns the number of references visited by the resolver
func (resolver *Resolver) GetReferenceVisited() int {
return resolver.referencesVisited
}
// GetIndexesVisited returns the number of indexes visited by the resolver
func (resolver *Resolver) GetIndexesVisited() int {
return resolver.indexesVisited
}
// GetRelativesSeen returns the number of siblings (nodes at the same level) seen for each reference found.
func (resolver *Resolver) GetRelativesSeen() int {
return resolver.relativesSeen
}
// Resolve will resolve the specification, everything that is not polymorphic and not circular, will be resolved.
// this data can get big, it results in a massive duplication of data. This is a destructive method and will permanently
// re-organize the node tree. Make sure you have copied your original tree before running this (if you want to preserve
// original data)
func (resolver *Resolver) Resolve() []*ResolvingError {
visitIndex(resolver, resolver.specIndex)
for _, circRef := range resolver.circularReferences {
// If the circular reference is not required, we can ignore it, as it's a terminable loop rather than an infinite one
if !circRef.IsInfiniteLoop {
continue
}
resolver.resolvingErrors = append(resolver.resolvingErrors, &ResolvingError{
ErrorRef: fmt.Errorf("infinite circular reference detected: %s", circRef.Start.Name),
Node: circRef.LoopPoint.Node,
Path: circRef.GenerateJourneyPath(),
})
}
return resolver.resolvingErrors
}
// CheckForCircularReferences Check for circular references, without resolving, a non-destructive run.
func (resolver *Resolver) CheckForCircularReferences() []*ResolvingError {
visitIndexWithoutDamagingIt(resolver, resolver.specIndex)
for _, circRef := range resolver.circularReferences {
// If the circular reference is not required, we can ignore it, as it's a terminable loop rather than an infinite one
if !circRef.IsInfiniteLoop {
continue
}
resolver.resolvingErrors = append(resolver.resolvingErrors, &ResolvingError{
ErrorRef: fmt.Errorf("infinite circular reference detected: %s", circRef.Start.Name),
Node: circRef.LoopPoint.Node,
Path: circRef.GenerateJourneyPath(),
CircularReference: circRef,
})
}
// update our index with any circular refs we found.
resolver.specIndex.SetCircularReferences(resolver.circularReferences)
return resolver.resolvingErrors
}
func visitIndexWithoutDamagingIt(res *Resolver, idx *SpecIndex) {
mapped := idx.GetMappedReferencesSequenced()
mappedIndex := idx.GetMappedReferences()
res.indexesVisited++
for _, ref := range mapped {
seenReferences := make(map[string]bool)
var journey []*Reference
res.journeysTaken++
res.VisitReference(ref.Reference, seenReferences, journey, false)
}
schemas := idx.GetAllComponentSchemas()
for s, schemaRef := range schemas {
if mappedIndex[s] == nil {
seenReferences := make(map[string]bool)
var journey []*Reference
res.journeysTaken++
res.VisitReference(schemaRef, seenReferences, journey, false)
}
}
//for _, c := range idx.GetChildren() {
// visitIndexWithoutDamagingIt(res, c)
//}
}
func visitIndex(res *Resolver, idx *SpecIndex) {
mapped := idx.GetMappedReferencesSequenced()
mappedIndex := idx.GetMappedReferences()
res.indexesVisited++
for _, ref := range mapped {
seenReferences := make(map[string]bool)
var journey []*Reference
res.journeysTaken++
if ref != nil && ref.Reference != nil {
ref.Reference.Node.Content = res.VisitReference(ref.Reference, seenReferences, journey, true)
}
}
schemas := idx.GetAllComponentSchemas()
for s, schemaRef := range schemas {
if mappedIndex[s] == nil {
seenReferences := make(map[string]bool)
var journey []*Reference
res.journeysTaken++
schemaRef.Node.Content = res.VisitReference(schemaRef, seenReferences, journey, true)
}
}
// map everything
for _, sequenced := range idx.GetAllSequencedReferences() {
locatedDef := mappedIndex[sequenced.Definition]
if locatedDef != nil {
if !locatedDef.Circular && locatedDef.Seen {
sequenced.Node.Content = locatedDef.Node.Content
}
}
}
}
// VisitReference will visit a reference as part of a journey and will return resolved nodes.
func (resolver *Resolver) VisitReference(ref *Reference, seen map[string]bool, journey []*Reference, resolve bool) []*yaml.Node {
resolver.referencesVisited++
if ref.Resolved || ref.Seen {
return ref.Node.Content
}
journey = append(journey, ref)
relatives := resolver.extractRelatives(ref, ref.Node, nil, seen, journey, resolve)
seen = make(map[string]bool)
seen[ref.Definition] = true
for i, r := range relatives {
// check if we have seen this on the journey before, if so! it's circular
skip := false
for i, j := range journey {
if j.FullDefinition == r.FullDefinition {
var foundDup *Reference
foundRef, _ := resolver.specIndex.SearchIndexForReferenceByReference(r)
if foundRef != nil {
foundDup = foundRef
}
var circRef *CircularReferenceResult
if !foundDup.Circular {
loop := append(journey, foundDup)
visitedDefinitions := make(map[string]bool)
isInfiniteLoop, _ := resolver.isInfiniteCircularDependency(foundDup, visitedDefinitions, nil)
isArray := false
if r.ParentNodeSchemaType == "array" {
isArray = true
}
circRef = &CircularReferenceResult{
Journey: loop,
Start: foundDup,
LoopIndex: i,
LoopPoint: foundDup,
IsArrayResult: isArray,
IsInfiniteLoop: isInfiniteLoop,
}
if resolver.IgnoreArray && isArray {
resolver.ignoredArrayReferences = append(resolver.ignoredArrayReferences, circRef)
} else {
resolver.circularReferences = append(resolver.circularReferences, circRef)
}
foundDup.Seen = true
foundDup.Circular = true
}
skip = true
}
}
if !skip {
var original *Reference
foundRef, _ := resolver.specIndex.SearchIndexForReferenceByReference(r)
if foundRef != nil {
original = foundRef
}
if original == nil {
panic(i)
}
resolved := resolver.VisitReference(original, seen, journey, resolve)
if resolve && !original.Circular {
r.Node.Content = resolved // this is where we perform the actual resolving.
}
r.Seen = true
ref.Seen = true
}
}
ref.Resolved = true
ref.Seen = true
return ref.Node.Content
}
func (resolver *Resolver) isInfiniteCircularDependency(ref *Reference, visitedDefinitions map[string]bool, initialRef *Reference) (bool, map[string]bool) {
if ref == nil {
return false, visitedDefinitions
}
for refDefinition := range ref.RequiredRefProperties {
r, _ := resolver.specIndex.SearchIndexForReference(refDefinition)
if initialRef != nil && initialRef.Definition == r.Definition {
return true, visitedDefinitions
}
if visitedDefinitions[r.Definition] {
continue
}
visitedDefinitions[r.Definition] = true
ir := initialRef
if ir == nil {
ir = ref
}
var isChildICD bool
isChildICD, visitedDefinitions = resolver.isInfiniteCircularDependency(r, visitedDefinitions, ir)
if isChildICD {
return true, visitedDefinitions
}
}
return false, visitedDefinitions
}
func (resolver *Resolver) extractRelatives(ref *Reference, node, parent *yaml.Node,
foundRelatives map[string]bool,
journey []*Reference, resolve bool) []*Reference {
if len(journey) > 100 {
return nil
}
var found []*Reference
if len(node.Content) > 0 {
for i, n := range node.Content {
if utils.IsNodeMap(n) || utils.IsNodeArray(n) {
found = append(found, resolver.extractRelatives(ref, n, node, foundRelatives, journey, resolve)...)
}
if i%2 == 0 && n.Value == "$ref" {
if !utils.IsNodeStringValue(node.Content[i+1]) {
continue
}
value := node.Content[i+1].Value
var locatedRef *Reference
var fullDef string
var definition string
// explode value
exp := strings.Split(value, "#/")
if len(exp) == 2 {
definition = fmt.Sprintf("#/%s", exp[1])
if exp[0] != "" {
if strings.HasPrefix(ref.FullDefinition, "http") {
// split the http URI into parts
httpExp := strings.Split(ref.FullDefinition, "#/")
u, _ := url.Parse(httpExp[0])
abs, _ := filepath.Abs(filepath.Join(filepath.Dir(u.Path), exp[0]))
u.Path = abs
fullDef = fmt.Sprintf("%s#/%s", u.String(), exp[1])
} else {
if filepath.IsAbs(exp[0]) {
fullDef = value
} else {
// split the referring ref full def into parts
fileDef := strings.Split(ref.FullDefinition, "#/")
// extract the location of the ref and build a full def path.
fullDef, _ = filepath.Abs(filepath.Join(filepath.Dir(fileDef[0]), exp[0]))
}
}
} else {
if strings.HasPrefix(exp[0], "http") {
fullDef = value // remote component, full def is based on value
} else {
if filepath.IsAbs(value) {
fullDef = value
} else {
// local component, full def is based on passed in ref
if strings.HasPrefix(ref.FullDefinition, "http") {
// split the http URI into parts
httpExp := strings.Split(ref.FullDefinition, "#/")
// parse an URL from the full def
u, _ := url.Parse(httpExp[0])
// extract the location of the ref and build a full def path.
fullDef = fmt.Sprintf("%s#/%s", u.String(), exp[1])
} else {
// split the full def into parts
fileDef := strings.Split(ref.FullDefinition, "#/")
// extract the location of the ref and build a full def path.
//loc, _ := filepath.Abs(fileDef[0]), exp[1]))
fullDef = fmt.Sprintf("%s#/%s", fileDef[0], exp[1])
}
}
}
}
} else {
definition = value
// if the reference is an http link
if strings.HasPrefix(value, "http") {
fullDef = value
} else {
if filepath.IsAbs(value) {
fullDef = value
} else {
// split the full def into parts
fileDef := strings.Split(ref.FullDefinition, "#/")
// is the file def an http link?
if strings.HasPrefix(fileDef[0], "http") {
u, _ := url.Parse(fileDef[0])
path, _ := filepath.Abs(filepath.Join(filepath.Dir(u.Path), exp[0]))
u.Path = path
fullDef = u.String()
} else {
fullDef, _ = filepath.Abs(filepath.Join(filepath.Dir(fileDef[0]), exp[0]))
}
}
}
}
searchRef := &Reference{
Definition: definition,
FullDefinition: fullDef,
RemoteLocation: ref.RemoteLocation,
IsRemote: true,
}
locatedRef, _ = resolver.specIndex.SearchIndexForReferenceByReference(searchRef)
if locatedRef == nil {
_, path := utils.ConvertComponentIdIntoFriendlyPathSearch(value)
err := &ResolvingError{
ErrorRef: fmt.Errorf("cannot resolve reference `%s`, it's missing", value),
Node: n,
Path: path,
}
resolver.resolvingErrors = append(resolver.resolvingErrors, err)
continue
}
schemaType := ""
if parent != nil {
_, arrayTypevn := utils.FindKeyNodeTop("type", parent.Content)
if arrayTypevn != nil {
if arrayTypevn.Value == "array" {
schemaType = "array"
}
}
}
locatedRef.ParentNodeSchemaType = schemaType
found = append(found, locatedRef)
foundRelatives[value] = true
}
if i%2 == 0 && n.Value != "$ref" && n.Value != "" {
if n.Value == "allOf" ||
n.Value == "oneOf" ||
n.Value == "anyOf" {
// if this is a polymorphic link, we want to follow it and see if it becomes circular
if utils.IsNodeMap(node.Content[i+1]) { // check for nested items
// check if items is present, to indicate an array
if _, v := utils.FindKeyNodeTop("items", node.Content[i+1].Content); v != nil {
if utils.IsNodeMap(v) {
if d, _, l := utils.IsNodeRefValue(v); d {
mappedRefs := resolver.specIndex.GetMappedReferences()[l]
if mappedRefs != nil && !mappedRefs.Circular {
circ := false
for f := range journey {
if journey[f].Definition == mappedRefs.Definition {
circ = true
break
}
}
if !circ {
resolver.VisitReference(mappedRefs, foundRelatives, journey, resolve)
} else {
loop := append(journey, mappedRefs)
circRef := &CircularReferenceResult{
Journey: loop,
Start: mappedRefs,
LoopIndex: i,
LoopPoint: mappedRefs,
PolymorphicType: n.Value,
IsPolymorphicResult: true,
}
mappedRefs.Seen = true
mappedRefs.Circular = true
if resolver.IgnorePoly {
resolver.ignoredPolyReferences = append(resolver.ignoredPolyReferences, circRef)
} else {
resolver.circularReferences = append(resolver.circularReferences, circRef)
}
}
}
}
}
}
}
// for array based polymorphic items
if utils.IsNodeArray(node.Content[i+1]) { // check for nested items
// check if items is present, to indicate an array
for q := range node.Content[i+1].Content {
v := node.Content[i+1].Content[q]
if utils.IsNodeMap(v) {
if d, _, l := utils.IsNodeRefValue(v); d {
mappedRefs := resolver.specIndex.GetMappedReferences()[l]
if mappedRefs != nil && !mappedRefs.Circular {
circ := false
for f := range journey {
if journey[f].Definition == mappedRefs.Definition {
circ = true
break
}
}
if !circ {
resolver.VisitReference(mappedRefs, foundRelatives, journey, resolve)
} else {
loop := append(journey, mappedRefs)
circRef := &CircularReferenceResult{
Journey: loop,
Start: mappedRefs,
LoopIndex: i,
LoopPoint: mappedRefs,
PolymorphicType: n.Value,
IsPolymorphicResult: true,
}
mappedRefs.Seen = true
mappedRefs.Circular = true
if resolver.IgnorePoly {
resolver.ignoredPolyReferences = append(resolver.ignoredPolyReferences, circRef)
} else {
resolver.circularReferences = append(resolver.circularReferences, circRef)
}
}
}
}
}
}
}
break
}
}
}
}
resolver.relativesSeen += len(found)
return found
}