Files
log10go/openai.yaml
2024-05-24 18:29:28 -07:00

13361 lines
480 KiB
YAML
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

openapi: 3.0.0
info:
title: OpenAI API
description: The OpenAI REST API. Please see https://platform.openai.com/docs/api-reference for more details.
version: "2.0.0"
termsOfService: https://openai.com/policies/terms-of-use
contact:
name: OpenAI Support
url: https://help.openai.com/
license:
name: MIT
url: https://github.com/openai/openai-openapi/blob/master/LICENSE
servers:
- url: https://api.openai.com/v1
tags:
- name: Assistants
description: Build Assistants that can call models and use tools.
- name: Audio
description: Learn how to turn audio into text or text into audio.
- name: Chat
description: Given a list of messages comprising a conversation, the model will return a response.
- name: Completions
description: Given a prompt, the model will return one or more predicted completions, and can also return the probabilities of alternative tokens at each position.
- name: Embeddings
description: Get a vector representation of a given input that can be easily consumed by machine learning models and algorithms.
- name: Fine-tuning
description: Manage fine-tuning jobs to tailor a model to your specific training data.
- name: Batch
description: Create large batches of API requests to run asynchronously.
- name: Files
description: Files are used to upload documents that can be used with features like Assistants and Fine-tuning.
- name: Images
description: Given a prompt and/or an input image, the model will generate a new image.
- name: Models
description: List and describe the various models available in the API.
- name: Moderations
description: Given a input text, outputs if the model classifies it as potentially harmful.
paths:
# Note: When adding an endpoint, make sure you also add it in the `groups` section, in the end of this file,
# under the appropriate group
/chat/completions:
post:
operationId: createChatCompletion
tags:
- Chat
summary: Creates a model response for the given chat conversation.
requestBody:
required: true
content:
application/json:
schema:
$ref: "#/components/schemas/CreateChatCompletionRequest"
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/CreateChatCompletionResponse"
x-oaiMeta:
name: Create chat completion
group: chat
returns: |
Returns a [chat completion](/docs/api-reference/chat/object) object, or a streamed sequence of [chat completion chunk](/docs/api-reference/chat/streaming) objects if the request is streamed.
path: create
examples:
- title: Default
request:
curl: |
curl https://api.openai.com/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-d '{
"model": "VAR_model_id",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "Hello!"
}
]
}'
python: |
from openai import OpenAI
client = OpenAI()
completion = client.chat.completions.create(
model="VAR_model_id",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Hello!"}
]
)
print(completion.choices[0].message)
node.js: |-
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const completion = await openai.chat.completions.create({
messages: [{ role: "system", content: "You are a helpful assistant." }],
model: "VAR_model_id",
});
console.log(completion.choices[0]);
}
main();
response: &chat_completion_example |
{
"id": "chatcmpl-123",
"object": "chat.completion",
"created": 1677652288,
"model": "gpt-3.5-turbo-0125",
"system_fingerprint": "fp_44709d6fcb",
"choices": [{
"index": 0,
"message": {
"role": "assistant",
"content": "\n\nHello there, how may I assist you today?",
},
"logprobs": null,
"finish_reason": "stop"
}],
"usage": {
"prompt_tokens": 9,
"completion_tokens": 12,
"total_tokens": 21
}
}
- title: Image input
request:
curl: |
curl https://api.openai.com/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-d '{
"model": "gpt-4-turbo",
"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": "What'\''s in this image?"
},
{
"type": "image_url",
"image_url": {
"url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
}
}
]
}
],
"max_tokens": 300
}'
python: |
from openai import OpenAI
client = OpenAI()
response = client.chat.completions.create(
model="gpt-4-turbo",
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "What's in this image?"},
{
"type": "image_url",
"image_url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg",
},
],
}
],
max_tokens=300,
)
print(response.choices[0])
node.js: |-
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const response = await openai.chat.completions.create({
model: "gpt-4-turbo",
messages: [
{
role: "user",
content: [
{ type: "text", text: "What's in this image?" },
{
type: "image_url",
image_url:
"https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg",
},
],
},
],
});
console.log(response.choices[0]);
}
main();
response: &chat_completion_image_example |
{
"id": "chatcmpl-123",
"object": "chat.completion",
"created": 1677652288,
"model": "gpt-3.5-turbo-0125",
"system_fingerprint": "fp_44709d6fcb",
"choices": [{
"index": 0,
"message": {
"role": "assistant",
"content": "\n\nThis image shows a wooden boardwalk extending through a lush green marshland.",
},
"logprobs": null,
"finish_reason": "stop"
}],
"usage": {
"prompt_tokens": 9,
"completion_tokens": 12,
"total_tokens": 21
}
}
- title: Streaming
request:
curl: |
curl https://api.openai.com/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-d '{
"model": "VAR_model_id",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "Hello!"
}
],
"stream": true
}'
python: |
from openai import OpenAI
client = OpenAI()
completion = client.chat.completions.create(
model="VAR_model_id",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Hello!"}
],
stream=True
)
for chunk in completion:
print(chunk.choices[0].delta)
node.js: |-
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const completion = await openai.chat.completions.create({
model: "VAR_model_id",
messages: [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Hello!"}
],
stream: true,
});
for await (const chunk of completion) {
console.log(chunk.choices[0].delta.content);
}
}
main();
response: &chat_completion_chunk_example |
{"id":"chatcmpl-123","object":"chat.completion.chunk","created":1694268190,"model":"gpt-3.5-turbo-0125", "system_fingerprint": "fp_44709d6fcb", "choices":[{"index":0,"delta":{"role":"assistant","content":""},"logprobs":null,"finish_reason":null}]}
{"id":"chatcmpl-123","object":"chat.completion.chunk","created":1694268190,"model":"gpt-3.5-turbo-0125", "system_fingerprint": "fp_44709d6fcb", "choices":[{"index":0,"delta":{"content":"Hello"},"logprobs":null,"finish_reason":null}]}
....
{"id":"chatcmpl-123","object":"chat.completion.chunk","created":1694268190,"model":"gpt-3.5-turbo-0125", "system_fingerprint": "fp_44709d6fcb", "choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}]}
- title: Functions
request:
curl: |
curl https://api.openai.com/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-d '{
"model": "gpt-4-turbo",
"messages": [
{
"role": "user",
"content": "What'\''s the weather like in Boston today?"
}
],
"tools": [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA"
},
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"]
}
},
"required": ["location"]
}
}
}
],
"tool_choice": "auto"
}'
python: |
from openai import OpenAI
client = OpenAI()
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
}
}
]
messages = [{"role": "user", "content": "What's the weather like in Boston today?"}]
completion = client.chat.completions.create(
model="VAR_model_id",
messages=messages,
tools=tools,
tool_choice="auto"
)
print(completion)
node.js: |-
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const messages = [{"role": "user", "content": "What's the weather like in Boston today?"}];
const tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
}
}
];
const response = await openai.chat.completions.create({
model: "gpt-4-turbo",
messages: messages,
tools: tools,
tool_choice: "auto",
});
console.log(response);
}
main();
response: &chat_completion_function_example |
{
"id": "chatcmpl-abc123",
"object": "chat.completion",
"created": 1699896916,
"model": "gpt-3.5-turbo-0125",
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": null,
"tool_calls": [
{
"id": "call_abc123",
"type": "function",
"function": {
"name": "get_current_weather",
"arguments": "{\n\"location\": \"Boston, MA\"\n}"
}
}
]
},
"logprobs": null,
"finish_reason": "tool_calls"
}
],
"usage": {
"prompt_tokens": 82,
"completion_tokens": 17,
"total_tokens": 99
}
}
- title: Logprobs
request:
curl: |
curl https://api.openai.com/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-d '{
"model": "VAR_model_id",
"messages": [
{
"role": "user",
"content": "Hello!"
}
],
"logprobs": true,
"top_logprobs": 2
}'
python: |
from openai import OpenAI
client = OpenAI()
completion = client.chat.completions.create(
model="VAR_model_id",
messages=[
{"role": "user", "content": "Hello!"}
],
logprobs=True,
top_logprobs=2
)
print(completion.choices[0].message)
print(completion.choices[0].logprobs)
node.js: |-
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const completion = await openai.chat.completions.create({
messages: [{ role: "user", content: "Hello!" }],
model: "VAR_model_id",
logprobs: true,
top_logprobs: 2,
});
console.log(completion.choices[0]);
}
main();
response: |
{
"id": "chatcmpl-123",
"object": "chat.completion",
"created": 1702685778,
"model": "gpt-3.5-turbo-0125",
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": "Hello! How can I assist you today?"
},
"logprobs": {
"content": [
{
"token": "Hello",
"logprob": -0.31725305,
"bytes": [72, 101, 108, 108, 111],
"top_logprobs": [
{
"token": "Hello",
"logprob": -0.31725305,
"bytes": [72, 101, 108, 108, 111]
},
{
"token": "Hi",
"logprob": -1.3190403,
"bytes": [72, 105]
}
]
},
{
"token": "!",
"logprob": -0.02380986,
"bytes": [
33
],
"top_logprobs": [
{
"token": "!",
"logprob": -0.02380986,
"bytes": [33]
},
{
"token": " there",
"logprob": -3.787621,
"bytes": [32, 116, 104, 101, 114, 101]
}
]
},
{
"token": " How",
"logprob": -0.000054669687,
"bytes": [32, 72, 111, 119],
"top_logprobs": [
{
"token": " How",
"logprob": -0.000054669687,
"bytes": [32, 72, 111, 119]
},
{
"token": "<|end|>",
"logprob": -10.953937,
"bytes": null
}
]
},
{
"token": " can",
"logprob": -0.015801601,
"bytes": [32, 99, 97, 110],
"top_logprobs": [
{
"token": " can",
"logprob": -0.015801601,
"bytes": [32, 99, 97, 110]
},
{
"token": " may",
"logprob": -4.161023,
"bytes": [32, 109, 97, 121]
}
]
},
{
"token": " I",
"logprob": -3.7697225e-6,
"bytes": [
32,
73
],
"top_logprobs": [
{
"token": " I",
"logprob": -3.7697225e-6,
"bytes": [32, 73]
},
{
"token": " assist",
"logprob": -13.596657,
"bytes": [32, 97, 115, 115, 105, 115, 116]
}
]
},
{
"token": " assist",
"logprob": -0.04571125,
"bytes": [32, 97, 115, 115, 105, 115, 116],
"top_logprobs": [
{
"token": " assist",
"logprob": -0.04571125,
"bytes": [32, 97, 115, 115, 105, 115, 116]
},
{
"token": " help",
"logprob": -3.1089056,
"bytes": [32, 104, 101, 108, 112]
}
]
},
{
"token": " you",
"logprob": -5.4385737e-6,
"bytes": [32, 121, 111, 117],
"top_logprobs": [
{
"token": " you",
"logprob": -5.4385737e-6,
"bytes": [32, 121, 111, 117]
},
{
"token": " today",
"logprob": -12.807695,
"bytes": [32, 116, 111, 100, 97, 121]
}
]
},
{
"token": " today",
"logprob": -0.0040071653,
"bytes": [32, 116, 111, 100, 97, 121],
"top_logprobs": [
{
"token": " today",
"logprob": -0.0040071653,
"bytes": [32, 116, 111, 100, 97, 121]
},
{
"token": "?",
"logprob": -5.5247097,
"bytes": [63]
}
]
},
{
"token": "?",
"logprob": -0.0008108172,
"bytes": [63],
"top_logprobs": [
{
"token": "?",
"logprob": -0.0008108172,
"bytes": [63]
},
{
"token": "?\n",
"logprob": -7.184561,
"bytes": [63, 10]
}
]
}
]
},
"finish_reason": "stop"
}
],
"usage": {
"prompt_tokens": 9,
"completion_tokens": 9,
"total_tokens": 18
},
"system_fingerprint": null
}
/completions:
post:
operationId: createCompletion
tags:
- Completions
summary: Creates a completion for the provided prompt and parameters.
requestBody:
required: true
content:
application/json:
schema:
$ref: "#/components/schemas/CreateCompletionRequest"
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/CreateCompletionResponse"
x-oaiMeta:
name: Create completion
group: completions
returns: |
Returns a [completion](/docs/api-reference/completions/object) object, or a sequence of completion objects if the request is streamed.
legacy: true
examples:
- title: No streaming
request:
curl: |
curl https://api.openai.com/v1/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-d '{
"model": "VAR_model_id",
"prompt": "Say this is a test",
"max_tokens": 7,
"temperature": 0
}'
python: |
from openai import OpenAI
client = OpenAI()
client.completions.create(
model="VAR_model_id",
prompt="Say this is a test",
max_tokens=7,
temperature=0
)
node.js: |-
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const completion = await openai.completions.create({
model: "VAR_model_id",
prompt: "Say this is a test.",
max_tokens: 7,
temperature: 0,
});
console.log(completion);
}
main();
response: |
{
"id": "cmpl-uqkvlQyYK7bGYrRHQ0eXlWi7",
"object": "text_completion",
"created": 1589478378,
"model": "VAR_model_id",
"system_fingerprint": "fp_44709d6fcb",
"choices": [
{
"text": "\n\nThis is indeed a test",
"index": 0,
"logprobs": null,
"finish_reason": "length"
}
],
"usage": {
"prompt_tokens": 5,
"completion_tokens": 7,
"total_tokens": 12
}
}
- title: Streaming
request:
curl: |
curl https://api.openai.com/v1/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-d '{
"model": "VAR_model_id",
"prompt": "Say this is a test",
"max_tokens": 7,
"temperature": 0,
"stream": true
}'
python: |
from openai import OpenAI
client = OpenAI()
for chunk in client.completions.create(
model="VAR_model_id",
prompt="Say this is a test",
max_tokens=7,
temperature=0,
stream=True
):
print(chunk.choices[0].text)
node.js: |-
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const stream = await openai.completions.create({
model: "VAR_model_id",
prompt: "Say this is a test.",
stream: true,
});
for await (const chunk of stream) {
console.log(chunk.choices[0].text)
}
}
main();
response: |
{
"id": "cmpl-7iA7iJjj8V2zOkCGvWF2hAkDWBQZe",
"object": "text_completion",
"created": 1690759702,
"choices": [
{
"text": "This",
"index": 0,
"logprobs": null,
"finish_reason": null
}
],
"model": "gpt-3.5-turbo-instruct"
"system_fingerprint": "fp_44709d6fcb",
}
/images/generations:
post:
operationId: createImage
tags:
- Images
summary: Creates an image given a prompt.
requestBody:
required: true
content:
application/json:
schema:
$ref: "#/components/schemas/CreateImageRequest"
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/ImagesResponse"
x-oaiMeta:
name: Create image
group: images
returns: Returns a list of [image](/docs/api-reference/images/object) objects.
examples:
request:
curl: |
curl https://api.openai.com/v1/images/generations \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-d '{
"model": "dall-e-3",
"prompt": "A cute baby sea otter",
"n": 1,
"size": "1024x1024"
}'
python: |
from openai import OpenAI
client = OpenAI()
client.images.generate(
model="dall-e-3",
prompt="A cute baby sea otter",
n=1,
size="1024x1024"
)
node.js: |-
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const image = await openai.images.generate({ model: "dall-e-3", prompt: "A cute baby sea otter" });
console.log(image.data);
}
main();
response: |
{
"created": 1589478378,
"data": [
{
"url": "https://..."
},
{
"url": "https://..."
}
]
}
/images/edits:
post:
operationId: createImageEdit
tags:
- Images
summary: Creates an edited or extended image given an original image and a prompt.
requestBody:
required: true
content:
multipart/form-data:
schema:
$ref: "#/components/schemas/CreateImageEditRequest"
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/ImagesResponse"
x-oaiMeta:
name: Create image edit
group: images
returns: Returns a list of [image](/docs/api-reference/images/object) objects.
examples:
request:
curl: |
curl https://api.openai.com/v1/images/edits \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-F image="@otter.png" \
-F mask="@mask.png" \
-F prompt="A cute baby sea otter wearing a beret" \
-F n=2 \
-F size="1024x1024"
python: |
from openai import OpenAI
client = OpenAI()
client.images.edit(
image=open("otter.png", "rb"),
mask=open("mask.png", "rb"),
prompt="A cute baby sea otter wearing a beret",
n=2,
size="1024x1024"
)
node.js: |-
import fs from "fs";
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const image = await openai.images.edit({
image: fs.createReadStream("otter.png"),
mask: fs.createReadStream("mask.png"),
prompt: "A cute baby sea otter wearing a beret",
});
console.log(image.data);
}
main();
response: |
{
"created": 1589478378,
"data": [
{
"url": "https://..."
},
{
"url": "https://..."
}
]
}
/images/variations:
post:
operationId: createImageVariation
tags:
- Images
summary: Creates a variation of a given image.
requestBody:
required: true
content:
multipart/form-data:
schema:
$ref: "#/components/schemas/CreateImageVariationRequest"
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/ImagesResponse"
x-oaiMeta:
name: Create image variation
group: images
returns: Returns a list of [image](/docs/api-reference/images/object) objects.
examples:
request:
curl: |
curl https://api.openai.com/v1/images/variations \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-F image="@otter.png" \
-F n=2 \
-F size="1024x1024"
python: |
from openai import OpenAI
client = OpenAI()
response = client.images.create_variation(
image=open("image_edit_original.png", "rb"),
n=2,
size="1024x1024"
)
node.js: |-
import fs from "fs";
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const image = await openai.images.createVariation({
image: fs.createReadStream("otter.png"),
});
console.log(image.data);
}
main();
response: |
{
"created": 1589478378,
"data": [
{
"url": "https://..."
},
{
"url": "https://..."
}
]
}
/embeddings:
post:
operationId: createEmbedding
tags:
- Embeddings
summary: Creates an embedding vector representing the input text.
requestBody:
required: true
content:
application/json:
schema:
$ref: "#/components/schemas/CreateEmbeddingRequest"
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/CreateEmbeddingResponse"
x-oaiMeta:
name: Create embeddings
group: embeddings
returns: A list of [embedding](/docs/api-reference/embeddings/object) objects.
examples:
request:
curl: |
curl https://api.openai.com/v1/embeddings \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"input": "The food was delicious and the waiter...",
"model": "text-embedding-ada-002",
"encoding_format": "float"
}'
python: |
from openai import OpenAI
client = OpenAI()
client.embeddings.create(
model="text-embedding-ada-002",
input="The food was delicious and the waiter...",
encoding_format="float"
)
node.js: |-
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const embedding = await openai.embeddings.create({
model: "text-embedding-ada-002",
input: "The quick brown fox jumped over the lazy dog",
encoding_format: "float",
});
console.log(embedding);
}
main();
response: |
{
"object": "list",
"data": [
{
"object": "embedding",
"embedding": [
0.0023064255,
-0.009327292,
.... (1536 floats total for ada-002)
-0.0028842222,
],
"index": 0
}
],
"model": "text-embedding-ada-002",
"usage": {
"prompt_tokens": 8,
"total_tokens": 8
}
}
/audio/speech:
post:
operationId: createSpeech
tags:
- Audio
summary: Generates audio from the input text.
requestBody:
required: true
content:
application/json:
schema:
$ref: "#/components/schemas/CreateSpeechRequest"
responses:
"200":
description: OK
headers:
Transfer-Encoding:
schema:
type: string
description: chunked
content:
application/octet-stream:
schema:
type: string
format: binary
x-oaiMeta:
name: Create speech
group: audio
returns: The audio file content.
examples:
request:
curl: |
curl https://api.openai.com/v1/audio/speech \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"model": "tts-1",
"input": "The quick brown fox jumped over the lazy dog.",
"voice": "alloy"
}' \
--output speech.mp3
python: |
from pathlib import Path
import openai
speech_file_path = Path(__file__).parent / "speech.mp3"
response = openai.audio.speech.create(
model="tts-1",
voice="alloy",
input="The quick brown fox jumped over the lazy dog."
)
response.stream_to_file(speech_file_path)
node: |
import fs from "fs";
import path from "path";
import OpenAI from "openai";
const openai = new OpenAI();
const speechFile = path.resolve("./speech.mp3");
async function main() {
const mp3 = await openai.audio.speech.create({
model: "tts-1",
voice: "alloy",
input: "Today is a wonderful day to build something people love!",
});
console.log(speechFile);
const buffer = Buffer.from(await mp3.arrayBuffer());
await fs.promises.writeFile(speechFile, buffer);
}
main();
/audio/transcriptions:
post:
operationId: createTranscription
tags:
- Audio
summary: Transcribes audio into the input language.
requestBody:
required: true
content:
multipart/form-data:
schema:
$ref: "#/components/schemas/CreateTranscriptionRequest"
responses:
"200":
description: OK
content:
application/json:
schema:
oneOf:
- $ref: "#/components/schemas/CreateTranscriptionResponseJson"
- $ref: "#/components/schemas/CreateTranscriptionResponseVerboseJson"
x-oaiMeta:
name: Create transcription
group: audio
returns: The [transcription object](/docs/api-reference/audio/json-object) or a [verbose transcription object](/docs/api-reference/audio/verbose-json-object).
examples:
- title: Default
request:
curl: |
curl https://api.openai.com/v1/audio/transcriptions \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "Content-Type: multipart/form-data" \
-F file="@/path/to/file/audio.mp3" \
-F model="whisper-1"
python: |
from openai import OpenAI
client = OpenAI()
audio_file = open("speech.mp3", "rb")
transcript = client.audio.transcriptions.create(
model="whisper-1",
file=audio_file
)
node: |
import fs from "fs";
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const transcription = await openai.audio.transcriptions.create({
file: fs.createReadStream("audio.mp3"),
model: "whisper-1",
});
console.log(transcription.text);
}
main();
response: &basic_transcription_response_example |
{
"text": "Imagine the wildest idea that you've ever had, and you're curious about how it might scale to something that's a 100, a 1,000 times bigger. This is a place where you can get to do that."
}
- title: Word timestamps
request:
curl: |
curl https://api.openai.com/v1/audio/transcriptions \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "Content-Type: multipart/form-data" \
-F file="@/path/to/file/audio.mp3" \
-F "timestamp_granularities[]=word" \
-F model="whisper-1" \
-F response_format="verbose_json"
python: |
from openai import OpenAI
client = OpenAI()
audio_file = open("speech.mp3", "rb")
transcript = client.audio.transcriptions.create(
file=audio_file,
model="whisper-1",
response_format="verbose_json",
timestamp_granularities=["word"]
)
print(transcript.words)
node: |
import fs from "fs";
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const transcription = await openai.audio.transcriptions.create({
file: fs.createReadStream("audio.mp3"),
model: "whisper-1",
response_format: "verbose_json",
timestamp_granularities: ["word"]
});
console.log(transcription.text);
}
main();
response: |
{
"task": "transcribe",
"language": "english",
"duration": 8.470000267028809,
"text": "The beach was a popular spot on a hot summer day. People were swimming in the ocean, building sandcastles, and playing beach volleyball.",
"words": [
{
"word": "The",
"start": 0.0,
"end": 0.23999999463558197
},
...
{
"word": "volleyball",
"start": 7.400000095367432,
"end": 7.900000095367432
}
]
}
- title: Segment timestamps
request:
curl: |
curl https://api.openai.com/v1/audio/transcriptions \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "Content-Type: multipart/form-data" \
-F file="@/path/to/file/audio.mp3" \
-F "timestamp_granularities[]=segment" \
-F model="whisper-1" \
-F response_format="verbose_json"
python: |
from openai import OpenAI
client = OpenAI()
audio_file = open("speech.mp3", "rb")
transcript = client.audio.transcriptions.create(
file=audio_file,
model="whisper-1",
response_format="verbose_json",
timestamp_granularities=["segment"]
)
print(transcript.words)
node: |
import fs from "fs";
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const transcription = await openai.audio.transcriptions.create({
file: fs.createReadStream("audio.mp3"),
model: "whisper-1",
response_format: "verbose_json",
timestamp_granularities: ["segment"]
});
console.log(transcription.text);
}
main();
response: &verbose_transcription_response_example |
{
"task": "transcribe",
"language": "english",
"duration": 8.470000267028809,
"text": "The beach was a popular spot on a hot summer day. People were swimming in the ocean, building sandcastles, and playing beach volleyball.",
"segments": [
{
"id": 0,
"seek": 0,
"start": 0.0,
"end": 3.319999933242798,
"text": " The beach was a popular spot on a hot summer day.",
"tokens": [
50364, 440, 7534, 390, 257, 3743, 4008, 322, 257, 2368, 4266, 786, 13, 50530
],
"temperature": 0.0,
"avg_logprob": -0.2860786020755768,
"compression_ratio": 1.2363636493682861,
"no_speech_prob": 0.00985979475080967
},
...
]
}
/audio/translations:
post:
operationId: createTranslation
tags:
- Audio
summary: Translates audio into English.
requestBody:
required: true
content:
multipart/form-data:
schema:
$ref: "#/components/schemas/CreateTranslationRequest"
responses:
"200":
description: OK
content:
application/json:
schema:
oneOf:
- $ref: "#/components/schemas/CreateTranslationResponseJson"
- $ref: "#/components/schemas/CreateTranslationResponseVerboseJson"
x-oaiMeta:
name: Create translation
group: audio
returns: The translated text.
examples:
request:
curl: |
curl https://api.openai.com/v1/audio/translations \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "Content-Type: multipart/form-data" \
-F file="@/path/to/file/german.m4a" \
-F model="whisper-1"
python: |
from openai import OpenAI
client = OpenAI()
audio_file = open("speech.mp3", "rb")
transcript = client.audio.translations.create(
model="whisper-1",
file=audio_file
)
node: |
import fs from "fs";
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const translation = await openai.audio.translations.create({
file: fs.createReadStream("speech.mp3"),
model: "whisper-1",
});
console.log(translation.text);
}
main();
response: |
{
"text": "Hello, my name is Wolfgang and I come from Germany. Where are you heading today?"
}
/files:
get:
operationId: listFiles
tags:
- Files
summary: Returns a list of files that belong to the user's organization.
parameters:
- in: query
name: purpose
required: false
schema:
type: string
description: Only return files with the given purpose.
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/ListFilesResponse"
x-oaiMeta:
name: List files
group: files
returns: A list of [File](/docs/api-reference/files/object) objects.
examples:
request:
curl: |
curl https://api.openai.com/v1/files \
-H "Authorization: Bearer $OPENAI_API_KEY"
python: |
from openai import OpenAI
client = OpenAI()
client.files.list()
node.js: |-
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const list = await openai.files.list();
for await (const file of list) {
console.log(file);
}
}
main();
response: |
{
"data": [
{
"id": "file-abc123",
"object": "file",
"bytes": 175,
"created_at": 1613677385,
"filename": "salesOverview.pdf",
"purpose": "assistants",
},
{
"id": "file-abc123",
"object": "file",
"bytes": 140,
"created_at": 1613779121,
"filename": "puppy.jsonl",
"purpose": "fine-tune",
}
],
"object": "list"
}
post:
operationId: createFile
tags:
- Files
summary: |
Upload a file that can be used across various endpoints. The size of all the files uploaded by one organization can be up to 100 GB.
The size of individual files can be a maximum of 512 MB or 2 million tokens for Assistants. See the [Assistants Tools guide](/docs/assistants/tools) to learn more about the types of files supported. The Fine-tuning API only supports `.jsonl` files.
Please [contact us](https://help.openai.com/) if you need to increase these storage limits.
requestBody:
required: true
content:
multipart/form-data:
schema:
$ref: "#/components/schemas/CreateFileRequest"
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/OpenAIFile"
x-oaiMeta:
name: Upload file
group: files
returns: The uploaded [File](/docs/api-reference/files/object) object.
examples:
request:
curl: |
curl https://api.openai.com/v1/files \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-F purpose="fine-tune" \
-F file="@mydata.jsonl"
python: |
from openai import OpenAI
client = OpenAI()
client.files.create(
file=open("mydata.jsonl", "rb"),
purpose="fine-tune"
)
node.js: |-
import fs from "fs";
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const file = await openai.files.create({
file: fs.createReadStream("mydata.jsonl"),
purpose: "fine-tune",
});
console.log(file);
}
main();
response: |
{
"id": "file-abc123",
"object": "file",
"bytes": 120000,
"created_at": 1677610602,
"filename": "mydata.jsonl",
"purpose": "fine-tune",
}
/files/{file_id}:
delete:
operationId: deleteFile
tags:
- Files
summary: Delete a file.
parameters:
- in: path
name: file_id
required: true
schema:
type: string
description: The ID of the file to use for this request.
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/DeleteFileResponse"
x-oaiMeta:
name: Delete file
group: files
returns: Deletion status.
examples:
request:
curl: |
curl https://api.openai.com/v1/files/file-abc123 \
-X DELETE \
-H "Authorization: Bearer $OPENAI_API_KEY"
python: |
from openai import OpenAI
client = OpenAI()
client.files.delete("file-abc123")
node.js: |-
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const file = await openai.files.del("file-abc123");
console.log(file);
}
main();
response: |
{
"id": "file-abc123",
"object": "file",
"deleted": true
}
get:
operationId: retrieveFile
tags:
- Files
summary: Returns information about a specific file.
parameters:
- in: path
name: file_id
required: true
schema:
type: string
description: The ID of the file to use for this request.
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/OpenAIFile"
x-oaiMeta:
name: Retrieve file
group: files
returns: The [File](/docs/api-reference/files/object) object matching the specified ID.
examples:
request:
curl: |
curl https://api.openai.com/v1/files/file-abc123 \
-H "Authorization: Bearer $OPENAI_API_KEY"
python: |
from openai import OpenAI
client = OpenAI()
client.files.retrieve("file-abc123")
node.js: |-
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const file = await openai.files.retrieve("file-abc123");
console.log(file);
}
main();
response: |
{
"id": "file-abc123",
"object": "file",
"bytes": 120000,
"created_at": 1677610602,
"filename": "mydata.jsonl",
"purpose": "fine-tune",
}
/files/{file_id}/content:
get:
operationId: downloadFile
tags:
- Files
summary: Returns the contents of the specified file.
parameters:
- in: path
name: file_id
required: true
schema:
type: string
description: The ID of the file to use for this request.
responses:
"200":
description: OK
content:
application/json:
schema:
type: string
x-oaiMeta:
name: Retrieve file content
group: files
returns: The file content.
examples:
request:
curl: |
curl https://api.openai.com/v1/files/file-abc123/content \
-H "Authorization: Bearer $OPENAI_API_KEY" > file.jsonl
python: |
from openai import OpenAI
client = OpenAI()
content = client.files.content("file-abc123")
node.js: |
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const file = await openai.files.content("file-abc123");
console.log(file);
}
main();
/fine_tuning/jobs:
post:
operationId: createFineTuningJob
tags:
- Fine-tuning
summary: |
Creates a fine-tuning job which begins the process of creating a new model from a given dataset.
Response includes details of the enqueued job including job status and the name of the fine-tuned models once complete.
[Learn more about fine-tuning](/docs/guides/fine-tuning)
requestBody:
required: true
content:
application/json:
schema:
$ref: "#/components/schemas/CreateFineTuningJobRequest"
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/FineTuningJob"
x-oaiMeta:
name: Create fine-tuning job
group: fine-tuning
returns: A [fine-tuning.job](/docs/api-reference/fine-tuning/object) object.
examples:
- title: Default
request:
curl: |
curl https://api.openai.com/v1/fine_tuning/jobs \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-d '{
"training_file": "file-BK7bzQj3FfZFXr7DbL6xJwfo",
"model": "gpt-3.5-turbo"
}'
python: |
from openai import OpenAI
client = OpenAI()
client.fine_tuning.jobs.create(
training_file="file-abc123",
model="gpt-3.5-turbo"
)
node.js: |
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const fineTune = await openai.fineTuning.jobs.create({
training_file: "file-abc123"
});
console.log(fineTune);
}
main();
response: |
{
"object": "fine_tuning.job",
"id": "ftjob-abc123",
"model": "gpt-3.5-turbo-0125",
"created_at": 1614807352,
"fine_tuned_model": null,
"organization_id": "org-123",
"result_files": [],
"status": "queued",
"validation_file": null,
"training_file": "file-abc123",
}
- title: Epochs
request:
curl: |
curl https://api.openai.com/v1/fine_tuning/jobs \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-d '{
"training_file": "file-abc123",
"model": "gpt-3.5-turbo",
"hyperparameters": {
"n_epochs": 2
}
}'
python: |
from openai import OpenAI
client = OpenAI()
client.fine_tuning.jobs.create(
training_file="file-abc123",
model="gpt-3.5-turbo",
hyperparameters={
"n_epochs":2
}
)
node.js: |
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const fineTune = await openai.fineTuning.jobs.create({
training_file: "file-abc123",
model: "gpt-3.5-turbo",
hyperparameters: { n_epochs: 2 }
});
console.log(fineTune);
}
main();
response: |
{
"object": "fine_tuning.job",
"id": "ftjob-abc123",
"model": "gpt-3.5-turbo-0125",
"created_at": 1614807352,
"fine_tuned_model": null,
"organization_id": "org-123",
"result_files": [],
"status": "queued",
"validation_file": null,
"training_file": "file-abc123",
"hyperparameters": {"n_epochs": 2},
}
- title: Validation file
request:
curl: |
curl https://api.openai.com/v1/fine_tuning/jobs \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-d '{
"training_file": "file-abc123",
"validation_file": "file-abc123",
"model": "gpt-3.5-turbo"
}'
python: |
from openai import OpenAI
client = OpenAI()
client.fine_tuning.jobs.create(
training_file="file-abc123",
validation_file="file-def456",
model="gpt-3.5-turbo"
)
node.js: |
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const fineTune = await openai.fineTuning.jobs.create({
training_file: "file-abc123",
validation_file: "file-abc123"
});
console.log(fineTune);
}
main();
response: |
{
"object": "fine_tuning.job",
"id": "ftjob-abc123",
"model": "gpt-3.5-turbo-0125",
"created_at": 1614807352,
"fine_tuned_model": null,
"organization_id": "org-123",
"result_files": [],
"status": "queued",
"validation_file": "file-abc123",
"training_file": "file-abc123",
}
- title: W&B Integration
request:
curl: |
curl https://api.openai.com/v1/fine_tuning/jobs \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-d '{
"training_file": "file-abc123",
"validation_file": "file-abc123",
"model": "gpt-3.5-turbo",
"integrations": [
{
"type": "wandb",
"wandb": {
"project": "my-wandb-project",
"name": "ft-run-display-name"
"tags": [
"first-experiment", "v2"
]
}
}
]
}'
response: |
{
"object": "fine_tuning.job",
"id": "ftjob-abc123",
"model": "gpt-3.5-turbo-0125",
"created_at": 1614807352,
"fine_tuned_model": null,
"organization_id": "org-123",
"result_files": [],
"status": "queued",
"validation_file": "file-abc123",
"training_file": "file-abc123",
"integrations": [
{
"type": "wandb",
"wandb": {
"project": "my-wandb-project",
"entity": None,
"run_id": "ftjob-abc123"
}
}
]
}
get:
operationId: listPaginatedFineTuningJobs
tags:
- Fine-tuning
summary: |
List your organization's fine-tuning jobs
parameters:
- name: after
in: query
description: Identifier for the last job from the previous pagination request.
required: false
schema:
type: string
- name: limit
in: query
description: Number of fine-tuning jobs to retrieve.
required: false
schema:
type: integer
default: 20
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/ListPaginatedFineTuningJobsResponse"
x-oaiMeta:
name: List fine-tuning jobs
group: fine-tuning
returns: A list of paginated [fine-tuning job](/docs/api-reference/fine-tuning/object) objects.
examples:
request:
curl: |
curl https://api.openai.com/v1/fine_tuning/jobs?limit=2 \
-H "Authorization: Bearer $OPENAI_API_KEY"
python: |
from openai import OpenAI
client = OpenAI()
client.fine_tuning.jobs.list()
node.js: |-
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const list = await openai.fineTuning.jobs.list();
for await (const fineTune of list) {
console.log(fineTune);
}
}
main();
response: |
{
"object": "list",
"data": [
{
"object": "fine_tuning.job.event",
"id": "ft-event-TjX0lMfOniCZX64t9PUQT5hn",
"created_at": 1689813489,
"level": "warn",
"message": "Fine tuning process stopping due to job cancellation",
"data": null,
"type": "message"
},
{ ... },
{ ... }
], "has_more": true
}
/fine_tuning/jobs/{fine_tuning_job_id}:
get:
operationId: retrieveFineTuningJob
tags:
- Fine-tuning
summary: |
Get info about a fine-tuning job.
[Learn more about fine-tuning](/docs/guides/fine-tuning)
parameters:
- in: path
name: fine_tuning_job_id
required: true
schema:
type: string
example: ft-AF1WoRqd3aJAHsqc9NY7iL8F
description: |
The ID of the fine-tuning job.
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/FineTuningJob"
x-oaiMeta:
name: Retrieve fine-tuning job
group: fine-tuning
returns: The [fine-tuning](/docs/api-reference/fine-tuning/object) object with the given ID.
examples:
request:
curl: |
curl https://api.openai.com/v1/fine_tuning/jobs/ft-AF1WoRqd3aJAHsqc9NY7iL8F \
-H "Authorization: Bearer $OPENAI_API_KEY"
python: |
from openai import OpenAI
client = OpenAI()
client.fine_tuning.jobs.retrieve("ftjob-abc123")
node.js: |
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const fineTune = await openai.fineTuning.jobs.retrieve("ftjob-abc123");
console.log(fineTune);
}
main();
response: &fine_tuning_example |
{
"object": "fine_tuning.job",
"id": "ftjob-abc123",
"model": "davinci-002",
"created_at": 1692661014,
"finished_at": 1692661190,
"fine_tuned_model": "ft:davinci-002:my-org:custom_suffix:7q8mpxmy",
"organization_id": "org-123",
"result_files": [
"file-abc123"
],
"status": "succeeded",
"validation_file": null,
"training_file": "file-abc123",
"hyperparameters": {
"n_epochs": 4,
"batch_size": 1,
"learning_rate_multiplier": 1.0
},
"trained_tokens": 5768,
"integrations": [],
"seed": 0,
"estimated_finish": 0
}
/fine_tuning/jobs/{fine_tuning_job_id}/events:
get:
operationId: listFineTuningEvents
tags:
- Fine-tuning
summary: |
Get status updates for a fine-tuning job.
parameters:
- in: path
name: fine_tuning_job_id
required: true
schema:
type: string
example: ft-AF1WoRqd3aJAHsqc9NY7iL8F
description: |
The ID of the fine-tuning job to get events for.
- name: after
in: query
description: Identifier for the last event from the previous pagination request.
required: false
schema:
type: string
- name: limit
in: query
description: Number of events to retrieve.
required: false
schema:
type: integer
default: 20
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/ListFineTuningJobEventsResponse"
x-oaiMeta:
name: List fine-tuning events
group: fine-tuning
returns: A list of fine-tuning event objects.
examples:
request:
curl: |
curl https://api.openai.com/v1/fine_tuning/jobs/ftjob-abc123/events \
-H "Authorization: Bearer $OPENAI_API_KEY"
python: |
from openai import OpenAI
client = OpenAI()
client.fine_tuning.jobs.list_events(
fine_tuning_job_id="ftjob-abc123",
limit=2
)
node.js: |-
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const list = await openai.fineTuning.list_events(id="ftjob-abc123", limit=2);
for await (const fineTune of list) {
console.log(fineTune);
}
}
main();
response: |
{
"object": "list",
"data": [
{
"object": "fine_tuning.job.event",
"id": "ft-event-ddTJfwuMVpfLXseO0Am0Gqjm",
"created_at": 1692407401,
"level": "info",
"message": "Fine tuning job successfully completed",
"data": null,
"type": "message"
},
{
"object": "fine_tuning.job.event",
"id": "ft-event-tyiGuB72evQncpH87xe505Sv",
"created_at": 1692407400,
"level": "info",
"message": "New fine-tuned model created: ft:gpt-3.5-turbo:openai::7p4lURel",
"data": null,
"type": "message"
}
],
"has_more": true
}
/fine_tuning/jobs/{fine_tuning_job_id}/cancel:
post:
operationId: cancelFineTuningJob
tags:
- Fine-tuning
summary: |
Immediately cancel a fine-tune job.
parameters:
- in: path
name: fine_tuning_job_id
required: true
schema:
type: string
example: ft-AF1WoRqd3aJAHsqc9NY7iL8F
description: |
The ID of the fine-tuning job to cancel.
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/FineTuningJob"
x-oaiMeta:
name: Cancel fine-tuning
group: fine-tuning
returns: The cancelled [fine-tuning](/docs/api-reference/fine-tuning/object) object.
examples:
request:
curl: |
curl -X POST https://api.openai.com/v1/fine_tuning/jobs/ftjob-abc123/cancel \
-H "Authorization: Bearer $OPENAI_API_KEY"
python: |
from openai import OpenAI
client = OpenAI()
client.fine_tuning.jobs.cancel("ftjob-abc123")
node.js: |-
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const fineTune = await openai.fineTuning.jobs.cancel("ftjob-abc123");
console.log(fineTune);
}
main();
response: |
{
"object": "fine_tuning.job",
"id": "ftjob-abc123",
"model": "gpt-3.5-turbo-0125",
"created_at": 1689376978,
"fine_tuned_model": null,
"organization_id": "org-123",
"result_files": [],
"hyperparameters": {
"n_epochs": "auto"
},
"status": "cancelled",
"validation_file": "file-abc123",
"training_file": "file-abc123"
}
/fine_tuning/jobs/{fine_tuning_job_id}/checkpoints:
get:
operationId: listFineTuningJobCheckpoints
tags:
- Fine-tuning
summary: |
List checkpoints for a fine-tuning job.
parameters:
- in: path
name: fine_tuning_job_id
required: true
schema:
type: string
example: ft-AF1WoRqd3aJAHsqc9NY7iL8F
description: |
The ID of the fine-tuning job to get checkpoints for.
- name: after
in: query
description: Identifier for the last checkpoint ID from the previous pagination request.
required: false
schema:
type: string
- name: limit
in: query
description: Number of checkpoints to retrieve.
required: false
schema:
type: integer
default: 10
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/ListFineTuningJobCheckpointsResponse"
x-oaiMeta:
name: List fine-tuning checkpoints
group: fine-tuning
returns: A list of fine-tuning [checkpoint objects](/docs/api-reference/fine-tuning/checkpoint-object) for a fine-tuning job.
examples:
request:
curl: |
curl https://api.openai.com/v1/fine_tuning/jobs/ftjob-abc123/checkpoints \
-H "Authorization: Bearer $OPENAI_API_KEY"
response: |
{
"object": "list"
"data": [
{
"object": "fine_tuning.job.checkpoint",
"id": "ftckpt_zc4Q7MP6XxulcVzj4MZdwsAB",
"created_at": 1519129973,
"fine_tuned_model_checkpoint": "ft:gpt-3.5-turbo-0125:my-org:custom-suffix:96olL566:ckpt-step-2000",
"metrics": {
"full_valid_loss": 0.134,
"full_valid_mean_token_accuracy": 0.874
},
"fine_tuning_job_id": "ftjob-abc123",
"step_number": 2000,
},
{
"object": "fine_tuning.job.checkpoint",
"id": "ftckpt_enQCFmOTGj3syEpYVhBRLTSy",
"created_at": 1519129833,
"fine_tuned_model_checkpoint": "ft:gpt-3.5-turbo-0125:my-org:custom-suffix:7q8mpxmy:ckpt-step-1000",
"metrics": {
"full_valid_loss": 0.167,
"full_valid_mean_token_accuracy": 0.781
},
"fine_tuning_job_id": "ftjob-abc123",
"step_number": 1000,
},
],
"first_id": "ftckpt_zc4Q7MP6XxulcVzj4MZdwsAB",
"last_id": "ftckpt_enQCFmOTGj3syEpYVhBRLTSy",
"has_more": true
}
/models:
get:
operationId: listModels
tags:
- Models
summary: Lists the currently available models, and provides basic information about each one such as the owner and availability.
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/ListModelsResponse"
x-oaiMeta:
name: List models
group: models
returns: A list of [model](/docs/api-reference/models/object) objects.
examples:
request:
curl: |
curl https://api.openai.com/v1/models \
-H "Authorization: Bearer $OPENAI_API_KEY"
python: |
from openai import OpenAI
client = OpenAI()
client.models.list()
node.js: |-
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const list = await openai.models.list();
for await (const model of list) {
console.log(model);
}
}
main();
response: |
{
"object": "list",
"data": [
{
"id": "model-id-0",
"object": "model",
"created": 1686935002,
"owned_by": "organization-owner"
},
{
"id": "model-id-1",
"object": "model",
"created": 1686935002,
"owned_by": "organization-owner",
},
{
"id": "model-id-2",
"object": "model",
"created": 1686935002,
"owned_by": "openai"
},
],
"object": "list"
}
/models/{model}:
get:
operationId: retrieveModel
tags:
- Models
summary: Retrieves a model instance, providing basic information about the model such as the owner and permissioning.
parameters:
- in: path
name: model
required: true
schema:
type: string
# ideally this will be an actual ID, so this will always work from browser
example: gpt-3.5-turbo
description: The ID of the model to use for this request
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/Model"
x-oaiMeta:
name: Retrieve model
group: models
returns: The [model](/docs/api-reference/models/object) object matching the specified ID.
examples:
request:
curl: |
curl https://api.openai.com/v1/models/VAR_model_id \
-H "Authorization: Bearer $OPENAI_API_KEY"
python: |
from openai import OpenAI
client = OpenAI()
client.models.retrieve("VAR_model_id")
node.js: |-
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const model = await openai.models.retrieve("VAR_model_id");
console.log(model);
}
main();
response: &retrieve_model_response |
{
"id": "VAR_model_id",
"object": "model",
"created": 1686935002,
"owned_by": "openai"
}
delete:
operationId: deleteModel
tags:
- Models
summary: Delete a fine-tuned model. You must have the Owner role in your organization to delete a model.
parameters:
- in: path
name: model
required: true
schema:
type: string
example: ft:gpt-3.5-turbo:acemeco:suffix:abc123
description: The model to delete
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/DeleteModelResponse"
x-oaiMeta:
name: Delete a fine-tuned model
group: models
returns: Deletion status.
examples:
request:
curl: |
curl https://api.openai.com/v1/models/ft:gpt-3.5-turbo:acemeco:suffix:abc123 \
-X DELETE \
-H "Authorization: Bearer $OPENAI_API_KEY"
python: |
from openai import OpenAI
client = OpenAI()
client.models.delete("ft:gpt-3.5-turbo:acemeco:suffix:abc123")
node.js: |-
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const model = await openai.models.del("ft:gpt-3.5-turbo:acemeco:suffix:abc123");
console.log(model);
}
main();
response: |
{
"id": "ft:gpt-3.5-turbo:acemeco:suffix:abc123",
"object": "model",
"deleted": true
}
/moderations:
post:
operationId: createModeration
tags:
- Moderations
summary: Classifies if text is potentially harmful.
requestBody:
required: true
content:
application/json:
schema:
$ref: "#/components/schemas/CreateModerationRequest"
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/CreateModerationResponse"
x-oaiMeta:
name: Create moderation
group: moderations
returns: A [moderation](/docs/api-reference/moderations/object) object.
examples:
request:
curl: |
curl https://api.openai.com/v1/moderations \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-d '{
"input": "I want to kill them."
}'
python: |
from openai import OpenAI
client = OpenAI()
moderation = client.moderations.create(input="I want to kill them.")
print(moderation)
node.js: |
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const moderation = await openai.moderations.create({ input: "I want to kill them." });
console.log(moderation);
}
main();
response: &moderation_example |
{
"id": "modr-XXXXX",
"model": "text-moderation-005",
"results": [
{
"flagged": true,
"categories": {
"sexual": false,
"hate": false,
"harassment": false,
"self-harm": false,
"sexual/minors": false,
"hate/threatening": false,
"violence/graphic": false,
"self-harm/intent": false,
"self-harm/instructions": false,
"harassment/threatening": true,
"violence": true,
},
"category_scores": {
"sexual": 1.2282071e-06,
"hate": 0.010696256,
"harassment": 0.29842457,
"self-harm": 1.5236925e-08,
"sexual/minors": 5.7246268e-08,
"hate/threatening": 0.0060676364,
"violence/graphic": 4.435014e-06,
"self-harm/intent": 8.098441e-10,
"self-harm/instructions": 2.8498655e-11,
"harassment/threatening": 0.63055265,
"violence": 0.99011886,
}
}
]
}
/assistants:
get:
operationId: listAssistants
tags:
- Assistants
summary: Returns a list of assistants.
parameters:
- name: limit
in: query
description: &pagination_limit_param_description |
A limit on the number of objects to be returned. Limit can range between 1 and 100, and the default is 20.
required: false
schema:
type: integer
default: 20
- name: order
in: query
description: &pagination_order_param_description |
Sort order by the `created_at` timestamp of the objects. `asc` for ascending order and `desc` for descending order.
schema:
type: string
default: desc
enum: ["asc", "desc"]
- name: after
in: query
description: &pagination_after_param_description |
A cursor for use in pagination. `after` is an object ID that defines your place in the list. For instance, if you make a list request and receive 100 objects, ending with obj_foo, your subsequent call can include after=obj_foo in order to fetch the next page of the list.
schema:
type: string
- name: before
in: query
description: &pagination_before_param_description |
A cursor for use in pagination. `before` is an object ID that defines your place in the list. For instance, if you make a list request and receive 100 objects, ending with obj_foo, your subsequent call can include before=obj_foo in order to fetch the previous page of the list.
schema:
type: string
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/ListAssistantsResponse"
x-oaiMeta:
name: List assistants
group: assistants
beta: true
returns: A list of [assistant](/docs/api-reference/assistants/object) objects.
examples:
request:
curl: |
curl "https://api.openai.com/v1/assistants?order=desc&limit=20" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "OpenAI-Beta: assistants=v2"
python: |
from openai import OpenAI
client = OpenAI()
my_assistants = client.beta.assistants.list(
order="desc",
limit="20",
)
print(my_assistants.data)
node.js: |-
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const myAssistants = await openai.beta.assistants.list({
order: "desc",
limit: "20",
});
console.log(myAssistants.data);
}
main();
response: &list_assistants_example |
{
"object": "list",
"data": [
{
"id": "asst_abc123",
"object": "assistant",
"created_at": 1698982736,
"name": "Coding Tutor",
"description": null,
"model": "gpt-4-turbo",
"instructions": "You are a helpful assistant designed to make me better at coding!",
"tools": [],
"tool_resources": {},
"metadata": {},
"top_p": 1.0,
"temperature": 1.0,
"response_format": "auto"
},
{
"id": "asst_abc456",
"object": "assistant",
"created_at": 1698982718,
"name": "My Assistant",
"description": null,
"model": "gpt-4-turbo",
"instructions": "You are a helpful assistant designed to make me better at coding!",
"tools": [],
"tool_resources": {},
"metadata": {},
"top_p": 1.0,
"temperature": 1.0,
"response_format": "auto"
},
{
"id": "asst_abc789",
"object": "assistant",
"created_at": 1698982643,
"name": null,
"description": null,
"model": "gpt-4-turbo",
"instructions": null,
"tools": [],
"tool_resources": {},
"metadata": {},
"top_p": 1.0,
"temperature": 1.0,
"response_format": "auto"
}
],
"first_id": "asst_abc123",
"last_id": "asst_abc789",
"has_more": false
}
post:
operationId: createAssistant
tags:
- Assistants
summary: Create an assistant with a model and instructions.
requestBody:
required: true
content:
application/json:
schema:
$ref: "#/components/schemas/CreateAssistantRequest"
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/AssistantObject"
x-oaiMeta:
name: Create assistant
group: assistants
beta: true
returns: An [assistant](/docs/api-reference/assistants/object) object.
examples:
- title: Code Interpreter
request:
curl: |
curl "https://api.openai.com/v1/assistants" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "OpenAI-Beta: assistants=v2" \
-d '{
"instructions": "You are a personal math tutor. When asked a question, write and run Python code to answer the question.",
"name": "Math Tutor",
"tools": [{"type": "code_interpreter"}],
"model": "gpt-4-turbo"
}'
python: |
from openai import OpenAI
client = OpenAI()
my_assistant = client.beta.assistants.create(
instructions="You are a personal math tutor. When asked a question, write and run Python code to answer the question.",
name="Math Tutor",
tools=[{"type": "code_interpreter"}],
model="gpt-4-turbo",
)
print(my_assistant)
node.js: |-
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const myAssistant = await openai.beta.assistants.create({
instructions:
"You are a personal math tutor. When asked a question, write and run Python code to answer the question.",
name: "Math Tutor",
tools: [{ type: "code_interpreter" }],
model: "gpt-4-turbo",
});
console.log(myAssistant);
}
main();
response: &create_assistants_example |
{
"id": "asst_abc123",
"object": "assistant",
"created_at": 1698984975,
"name": "Math Tutor",
"description": null,
"model": "gpt-4-turbo",
"instructions": "You are a personal math tutor. When asked a question, write and run Python code to answer the question.",
"tools": [
{
"type": "code_interpreter"
}
],
"metadata": {},
"top_p": 1.0,
"temperature": 1.0,
"response_format": "auto"
}
- title: Files
request:
curl: |
curl https://api.openai.com/v1/assistants \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "OpenAI-Beta: assistants=v2" \
-d '{
"instructions": "You are an HR bot, and you have access to files to answer employee questions about company policies.",
"tools": [{"type": "file_search"}],
"tool_resources": {"file_search": {"vector_store_ids": ["vs_123"]}},
"model": "gpt-4-turbo"
}'
python: |
from openai import OpenAI
client = OpenAI()
my_assistant = client.beta.assistants.create(
instructions="You are an HR bot, and you have access to files to answer employee questions about company policies.",
name="HR Helper",
tools=[{"type": "file_search"}],
tool_resources={"file_search": {"vector_store_ids": ["vs_123"]}},
model="gpt-4-turbo"
)
print(my_assistant)
node.js: |-
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const myAssistant = await openai.beta.assistants.create({
instructions:
"You are an HR bot, and you have access to files to answer employee questions about company policies.",
name: "HR Helper",
tools: [{ type: "file_search" }],
tool_resources: {
file_search: {
vector_store_ids: ["vs_123"]
}
},
model: "gpt-4-turbo"
});
console.log(myAssistant);
}
main();
response: |
{
"id": "asst_abc123",
"object": "assistant",
"created_at": 1699009403,
"name": "HR Helper",
"description": null,
"model": "gpt-4-turbo",
"instructions": "You are an HR bot, and you have access to files to answer employee questions about company policies.",
"tools": [
{
"type": "file_search"
}
],
"tool_resources": {
"file_search": {
"vector_store_ids": ["vs_123"]
}
},
"metadata": {},
"top_p": 1.0,
"temperature": 1.0,
"response_format": "auto"
}
/assistants/{assistant_id}:
get:
operationId: getAssistant
tags:
- Assistants
summary: Retrieves an assistant.
parameters:
- in: path
name: assistant_id
required: true
schema:
type: string
description: The ID of the assistant to retrieve.
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/AssistantObject"
x-oaiMeta:
name: Retrieve assistant
group: assistants
beta: true
returns: The [assistant](/docs/api-reference/assistants/object) object matching the specified ID.
examples:
request:
curl: |
curl https://api.openai.com/v1/assistants/asst_abc123 \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "OpenAI-Beta: assistants=v2"
python: |
from openai import OpenAI
client = OpenAI()
my_assistant = client.beta.assistants.retrieve("asst_abc123")
print(my_assistant)
node.js: |-
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const myAssistant = await openai.beta.assistants.retrieve(
"asst_abc123"
);
console.log(myAssistant);
}
main();
response: |
{
"id": "asst_abc123",
"object": "assistant",
"created_at": 1699009709,
"name": "HR Helper",
"description": null,
"model": "gpt-4-turbo",
"instructions": "You are an HR bot, and you have access to files to answer employee questions about company policies.",
"tools": [
{
"type": "file_search"
}
],
"metadata": {},
"top_p": 1.0,
"temperature": 1.0,
"response_format": "auto"
}
post:
operationId: modifyAssistant
tags:
- Assistants
summary: Modifies an assistant.
parameters:
- in: path
name: assistant_id
required: true
schema:
type: string
description: The ID of the assistant to modify.
requestBody:
required: true
content:
application/json:
schema:
$ref: "#/components/schemas/ModifyAssistantRequest"
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/AssistantObject"
x-oaiMeta:
name: Modify assistant
group: assistants
beta: true
returns: The modified [assistant](/docs/api-reference/assistants/object) object.
examples:
request:
curl: |
curl https://api.openai.com/v1/assistants/asst_abc123 \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "OpenAI-Beta: assistants=v2" \
-d '{
"instructions": "You are an HR bot, and you have access to files to answer employee questions about company policies. Always response with info from either of the files.",
"tools": [{"type": "file_search"}],
"model": "gpt-4-turbo"
}'
python: |
from openai import OpenAI
client = OpenAI()
my_updated_assistant = client.beta.assistants.update(
"asst_abc123",
instructions="You are an HR bot, and you have access to files to answer employee questions about company policies. Always response with info from either of the files.",
name="HR Helper",
tools=[{"type": "file_search"}],
model="gpt-4-turbo"
)
print(my_updated_assistant)
node.js: |-
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const myUpdatedAssistant = await openai.beta.assistants.update(
"asst_abc123",
{
instructions:
"You are an HR bot, and you have access to files to answer employee questions about company policies. Always response with info from either of the files.",
name: "HR Helper",
tools: [{ type: "file_search" }],
model: "gpt-4-turbo"
}
);
console.log(myUpdatedAssistant);
}
main();
response: |
{
"id": "asst_123",
"object": "assistant",
"created_at": 1699009709,
"name": "HR Helper",
"description": null,
"model": "gpt-4-turbo",
"instructions": "You are an HR bot, and you have access to files to answer employee questions about company policies. Always response with info from either of the files.",
"tools": [
{
"type": "file_search"
}
],
"tool_resources": {
"file_search": {
"vector_store_ids": []
}
},
"metadata": {},
"top_p": 1.0,
"temperature": 1.0,
"response_format": "auto"
}
delete:
operationId: deleteAssistant
tags:
- Assistants
summary: Delete an assistant.
parameters:
- in: path
name: assistant_id
required: true
schema:
type: string
description: The ID of the assistant to delete.
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/DeleteAssistantResponse"
x-oaiMeta:
name: Delete assistant
group: assistants
beta: true
returns: Deletion status
examples:
request:
curl: |
curl https://api.openai.com/v1/assistants/asst_abc123 \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "OpenAI-Beta: assistants=v2" \
-X DELETE
python: |
from openai import OpenAI
client = OpenAI()
response = client.beta.assistants.delete("asst_abc123")
print(response)
node.js: |-
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const response = await openai.beta.assistants.del("asst_abc123");
console.log(response);
}
main();
response: |
{
"id": "asst_abc123",
"object": "assistant.deleted",
"deleted": true
}
/threads:
post:
operationId: createThread
tags:
- Assistants
summary: Create a thread.
requestBody:
content:
application/json:
schema:
$ref: "#/components/schemas/CreateThreadRequest"
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/ThreadObject"
x-oaiMeta:
name: Create thread
group: threads
beta: true
returns: A [thread](/docs/api-reference/threads) object.
examples:
- title: Empty
request:
curl: |
curl https://api.openai.com/v1/threads \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "OpenAI-Beta: assistants=v2" \
-d ''
python: |
from openai import OpenAI
client = OpenAI()
empty_thread = client.beta.threads.create()
print(empty_thread)
node.js: |-
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const emptyThread = await openai.beta.threads.create();
console.log(emptyThread);
}
main();
response: |
{
"id": "thread_abc123",
"object": "thread",
"created_at": 1699012949,
"metadata": {},
"tool_resources": {}
}
- title: Messages
request:
curl: |
curl https://api.openai.com/v1/threads \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "OpenAI-Beta: assistants=v2" \
-d '{
"messages": [{
"role": "user",
"content": "Hello, what is AI?"
}, {
"role": "user",
"content": "How does AI work? Explain it in simple terms."
}]
}'
python: |
from openai import OpenAI
client = OpenAI()
message_thread = client.beta.threads.create(
messages=[
{
"role": "user",
"content": "Hello, what is AI?"
},
{
"role": "user",
"content": "How does AI work? Explain it in simple terms."
},
]
)
print(message_thread)
node.js: |-
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const messageThread = await openai.beta.threads.create({
messages: [
{
role: "user",
content: "Hello, what is AI?"
},
{
role: "user",
content: "How does AI work? Explain it in simple terms.",
},
],
});
console.log(messageThread);
}
main();
response: |
{
"id": "thread_abc123",
"object": "thread",
"created_at": 1699014083,
"metadata": {},
"tool_resources": {}
}
/threads/{thread_id}:
get:
operationId: getThread
tags:
- Assistants
summary: Retrieves a thread.
parameters:
- in: path
name: thread_id
required: true
schema:
type: string
description: The ID of the thread to retrieve.
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/ThreadObject"
x-oaiMeta:
name: Retrieve thread
group: threads
beta: true
returns: The [thread](/docs/api-reference/threads/object) object matching the specified ID.
examples:
request:
curl: |
curl https://api.openai.com/v1/threads/thread_abc123 \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "OpenAI-Beta: assistants=v2"
python: |
from openai import OpenAI
client = OpenAI()
my_thread = client.beta.threads.retrieve("thread_abc123")
print(my_thread)
node.js: |-
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const myThread = await openai.beta.threads.retrieve(
"thread_abc123"
);
console.log(myThread);
}
main();
response: |
{
"id": "thread_abc123",
"object": "thread",
"created_at": 1699014083,
"metadata": {},
"tool_resources": {
"code_interpreter": {
"file_ids": []
}
}
}
post:
operationId: modifyThread
tags:
- Assistants
summary: Modifies a thread.
parameters:
- in: path
name: thread_id
required: true
schema:
type: string
description: The ID of the thread to modify. Only the `metadata` can be modified.
requestBody:
required: true
content:
application/json:
schema:
$ref: "#/components/schemas/ModifyThreadRequest"
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/ThreadObject"
x-oaiMeta:
name: Modify thread
group: threads
beta: true
returns: The modified [thread](/docs/api-reference/threads/object) object matching the specified ID.
examples:
request:
curl: |
curl https://api.openai.com/v1/threads/thread_abc123 \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "OpenAI-Beta: assistants=v2" \
-d '{
"metadata": {
"modified": "true",
"user": "abc123"
}
}'
python: |
from openai import OpenAI
client = OpenAI()
my_updated_thread = client.beta.threads.update(
"thread_abc123",
metadata={
"modified": "true",
"user": "abc123"
}
)
print(my_updated_thread)
node.js: |-
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const updatedThread = await openai.beta.threads.update(
"thread_abc123",
{
metadata: { modified: "true", user: "abc123" },
}
);
console.log(updatedThread);
}
main();
response: |
{
"id": "thread_abc123",
"object": "thread",
"created_at": 1699014083,
"metadata": {
"modified": "true",
"user": "abc123"
},
"tool_resources": {}
}
delete:
operationId: deleteThread
tags:
- Assistants
summary: Delete a thread.
parameters:
- in: path
name: thread_id
required: true
schema:
type: string
description: The ID of the thread to delete.
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/DeleteThreadResponse"
x-oaiMeta:
name: Delete thread
group: threads
beta: true
returns: Deletion status
examples:
request:
curl: |
curl https://api.openai.com/v1/threads/thread_abc123 \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "OpenAI-Beta: assistants=v2" \
-X DELETE
python: |
from openai import OpenAI
client = OpenAI()
response = client.beta.threads.delete("thread_abc123")
print(response)
node.js: |-
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const response = await openai.beta.threads.del("thread_abc123");
console.log(response);
}
main();
response: |
{
"id": "thread_abc123",
"object": "thread.deleted",
"deleted": true
}
/threads/{thread_id}/messages:
get:
operationId: listMessages
tags:
- Assistants
summary: Returns a list of messages for a given thread.
parameters:
- in: path
name: thread_id
required: true
schema:
type: string
description: The ID of the [thread](/docs/api-reference/threads) the messages belong to.
- name: limit
in: query
description: *pagination_limit_param_description
required: false
schema:
type: integer
default: 20
- name: order
in: query
description: *pagination_order_param_description
schema:
type: string
default: desc
enum: ["asc", "desc"]
- name: after
in: query
description: *pagination_after_param_description
schema:
type: string
- name: before
in: query
description: *pagination_before_param_description
schema:
type: string
- name: run_id
in: query
description: |
Filter messages by the run ID that generated them.
schema:
type: string
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/ListMessagesResponse"
x-oaiMeta:
name: List messages
group: threads
beta: true
returns: A list of [message](/docs/api-reference/messages) objects.
examples:
request:
curl: |
curl https://api.openai.com/v1/threads/thread_abc123/messages \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "OpenAI-Beta: assistants=v2"
python: |
from openai import OpenAI
client = OpenAI()
thread_messages = client.beta.threads.messages.list("thread_abc123")
print(thread_messages.data)
node.js: |-
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const threadMessages = await openai.beta.threads.messages.list(
"thread_abc123"
);
console.log(threadMessages.data);
}
main();
response: |
{
"object": "list",
"data": [
{
"id": "msg_abc123",
"object": "thread.message",
"created_at": 1699016383,
"assistant_id": null,
"thread_id": "thread_abc123",
"run_id": null,
"role": "user",
"content": [
{
"type": "text",
"text": {
"value": "How does AI work? Explain it in simple terms.",
"annotations": []
}
}
],
"attachments": [],
"metadata": {}
},
{
"id": "msg_abc456",
"object": "thread.message",
"created_at": 1699016383,
"assistant_id": null,
"thread_id": "thread_abc123",
"run_id": null,
"role": "user",
"content": [
{
"type": "text",
"text": {
"value": "Hello, what is AI?",
"annotations": []
}
}
],
"attachments": [],
"metadata": {}
}
],
"first_id": "msg_abc123",
"last_id": "msg_abc456",
"has_more": false
}
post:
operationId: createMessage
tags:
- Assistants
summary: Create a message.
parameters:
- in: path
name: thread_id
required: true
schema:
type: string
description: The ID of the [thread](/docs/api-reference/threads) to create a message for.
requestBody:
required: true
content:
application/json:
schema:
$ref: "#/components/schemas/CreateMessageRequest"
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/MessageObject"
x-oaiMeta:
name: Create message
group: threads
beta: true
returns: A [message](/docs/api-reference/messages/object) object.
examples:
request:
curl: |
curl https://api.openai.com/v1/threads/thread_abc123/messages \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "OpenAI-Beta: assistants=v2" \
-d '{
"role": "user",
"content": "How does AI work? Explain it in simple terms."
}'
python: |
from openai import OpenAI
client = OpenAI()
thread_message = client.beta.threads.messages.create(
"thread_abc123",
role="user",
content="How does AI work? Explain it in simple terms.",
)
print(thread_message)
node.js: |-
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const threadMessages = await openai.beta.threads.messages.create(
"thread_abc123",
{ role: "user", content: "How does AI work? Explain it in simple terms." }
);
console.log(threadMessages);
}
main();
response: |
{
"id": "msg_abc123",
"object": "thread.message",
"created_at": 1713226573,
"assistant_id": null,
"thread_id": "thread_abc123",
"run_id": null,
"role": "user",
"content": [
{
"type": "text",
"text": {
"value": "How does AI work? Explain it in simple terms.",
"annotations": []
}
}
],
"attachments": [],
"metadata": {}
}
/threads/{thread_id}/messages/{message_id}:
get:
operationId: getMessage
tags:
- Assistants
summary: Retrieve a message.
parameters:
- in: path
name: thread_id
required: true
schema:
type: string
description: The ID of the [thread](/docs/api-reference/threads) to which this message belongs.
- in: path
name: message_id
required: true
schema:
type: string
description: The ID of the message to retrieve.
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/MessageObject"
x-oaiMeta:
name: Retrieve message
group: threads
beta: true
returns: The [message](/docs/api-reference/threads/messages/object) object matching the specified ID.
examples:
request:
curl: |
curl https://api.openai.com/v1/threads/thread_abc123/messages/msg_abc123 \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "OpenAI-Beta: assistants=v2"
python: |
from openai import OpenAI
client = OpenAI()
message = client.beta.threads.messages.retrieve(
message_id="msg_abc123",
thread_id="thread_abc123",
)
print(message)
node.js: |-
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const message = await openai.beta.threads.messages.retrieve(
"thread_abc123",
"msg_abc123"
);
console.log(message);
}
main();
response: |
{
"id": "msg_abc123",
"object": "thread.message",
"created_at": 1699017614,
"assistant_id": null,
"thread_id": "thread_abc123",
"run_id": null,
"role": "user",
"content": [
{
"type": "text",
"text": {
"value": "How does AI work? Explain it in simple terms.",
"annotations": []
}
}
],
"attachments": [],
"metadata": {}
}
post:
operationId: modifyMessage
tags:
- Assistants
summary: Modifies a message.
parameters:
- in: path
name: thread_id
required: true
schema:
type: string
description: The ID of the thread to which this message belongs.
- in: path
name: message_id
required: true
schema:
type: string
description: The ID of the message to modify.
requestBody:
required: true
content:
application/json:
schema:
$ref: "#/components/schemas/ModifyMessageRequest"
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/MessageObject"
x-oaiMeta:
name: Modify message
group: threads
beta: true
returns: The modified [message](/docs/api-reference/threads/messages/object) object.
examples:
request:
curl: |
curl https://api.openai.com/v1/threads/thread_abc123/messages/msg_abc123 \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "OpenAI-Beta: assistants=v2" \
-d '{
"metadata": {
"modified": "true",
"user": "abc123"
}
}'
python: |
from openai import OpenAI
client = OpenAI()
message = client.beta.threads.messages.update(
message_id="msg_abc12",
thread_id="thread_abc123",
metadata={
"modified": "true",
"user": "abc123",
},
)
print(message)
node.js: |-
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const message = await openai.beta.threads.messages.update(
"thread_abc123",
"msg_abc123",
{
metadata: {
modified: "true",
user: "abc123",
},
}
}'
response: |
{
"id": "msg_abc123",
"object": "thread.message",
"created_at": 1699017614,
"assistant_id": null,
"thread_id": "thread_abc123",
"run_id": null,
"role": "user",
"content": [
{
"type": "text",
"text": {
"value": "How does AI work? Explain it in simple terms.",
"annotations": []
}
}
],
"file_ids": [],
"metadata": {
"modified": "true",
"user": "abc123"
}
}
delete:
operationId: deleteMessage
tags:
- Assistants
summary: Deletes a message.
parameters:
- in: path
name: thread_id
required: true
schema:
type: string
description: The ID of the thread to which this message belongs.
- in: path
name: message_id
required: true
schema:
type: string
description: The ID of the message to delete.
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/DeleteMessageResponse"
x-oaiMeta:
name: Delete message
group: threads
beta: true
returns: Deletion status
examples:
request:
curl: |
curl -X DELETE https://api.openai.com/v1/threads/thread_abc123/messages/msg_abc123 \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "OpenAI-Beta: assistants=v2"
python: |
from openai import OpenAI
client = OpenAI()
deleted_message = client.beta.threads.messages.delete(
message_id="msg_abc12",
thread_id="thread_abc123",
)
print(deleted_message)
node.js: |-
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const deletedMessage = await openai.beta.threads.messages.del(
"thread_abc123",
"msg_abc123"
);
console.log(deletedMessage);
}
response: |
{
"id": "msg_abc123",
"object": "thread.message.deleted",
"deleted": true
}
/threads/runs:
post:
operationId: createThreadAndRun
tags:
- Assistants
summary: Create a thread and run it in one request.
requestBody:
required: true
content:
application/json:
schema:
$ref: "#/components/schemas/CreateThreadAndRunRequest"
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/RunObject"
x-oaiMeta:
name: Create thread and run
group: threads
beta: true
returns: A [run](/docs/api-reference/runs/object) object.
examples:
- title: Default
request:
curl: |
curl https://api.openai.com/v1/threads/runs \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "Content-Type: application/json" \
-H "OpenAI-Beta: assistants=v2" \
-d '{
"assistant_id": "asst_abc123",
"thread": {
"messages": [
{"role": "user", "content": "Explain deep learning to a 5 year old."}
]
}
}'
python: |
from openai import OpenAI
client = OpenAI()
run = client.beta.threads.create_and_run(
assistant_id="asst_abc123",
thread={
"messages": [
{"role": "user", "content": "Explain deep learning to a 5 year old."}
]
}
)
print(run)
node.js: |
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const run = await openai.beta.threads.createAndRun({
assistant_id: "asst_abc123",
thread: {
messages: [
{ role: "user", content: "Explain deep learning to a 5 year old." },
],
},
});
console.log(run);
}
main();
response: |
{
"id": "run_abc123",
"object": "thread.run",
"created_at": 1699076792,
"assistant_id": "asst_abc123",
"thread_id": "thread_abc123",
"status": "queued",
"started_at": null,
"expires_at": 1699077392,
"cancelled_at": null,
"failed_at": null,
"completed_at": null,
"required_action": null,
"last_error": null,
"model": "gpt-4-turbo",
"instructions": "You are a helpful assistant.",
"tools": [],
"tool_resources": {},
"metadata": {},
"temperature": 1.0,
"top_p": 1.0,
"max_completion_tokens": null,
"max_prompt_tokens": null,
"truncation_strategy": {
"type": "auto",
"last_messages": null
},
"incomplete_details": null,
"usage": null,
"response_format": "auto",
"tool_choice": "auto"
}
- title: Streaming
request:
curl: |
curl https://api.openai.com/v1/threads/runs \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "Content-Type: application/json" \
-H "OpenAI-Beta: assistants=v2" \
-d '{
"assistant_id": "asst_123",
"thread": {
"messages": [
{"role": "user", "content": "Hello"}
]
},
"stream": true
}'
python: |
from openai import OpenAI
client = OpenAI()
stream = client.beta.threads.create_and_run(
assistant_id="asst_123",
thread={
"messages": [
{"role": "user", "content": "Hello"}
]
},
stream=True
)
for event in stream:
print(event)
node.js: |
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const stream = await openai.beta.threads.createAndRun({
assistant_id: "asst_123",
thread: {
messages: [
{ role: "user", content: "Hello" },
],
},
stream: true
});
for await (const event of stream) {
console.log(event);
}
}
main();
response: |
event: thread.created
data: {"id":"thread_123","object":"thread","created_at":1710348075,"metadata":{}}
event: thread.run.created
data: {"id":"run_123","object":"thread.run","created_at":1710348075,"assistant_id":"asst_123","thread_id":"thread_123","status":"queued","started_at":null,"expires_at":1710348675,"cancelled_at":null,"failed_at":null,"completed_at":null,"required_action":null,"last_error":null,"model":"gpt-4-turbo","instructions":null,"tools":[],"tool_resources":{},"metadata":{},"temperature":1.0,"top_p":1.0,"max_completion_tokens":null,"max_prompt_tokens":null,"truncation_strategy":{"type":"auto","last_messages":null},"incomplete_details":null,"usage":null,"response_format":"auto","tool_choice":"auto"}
event: thread.run.queued
data: {"id":"run_123","object":"thread.run","created_at":1710348075,"assistant_id":"asst_123","thread_id":"thread_123","status":"queued","started_at":null,"expires_at":1710348675,"cancelled_at":null,"failed_at":null,"completed_at":null,"required_action":null,"last_error":null,"model":"gpt-4-turbo","instructions":null,"tools":[],"tool_resources":{},"metadata":{},"temperature":1.0,"top_p":1.0,"max_completion_tokens":null,"max_prompt_tokens":null,"truncation_strategy":{"type":"auto","last_messages":null},"incomplete_details":null,"usage":null,"response_format":"auto","tool_choice":"auto"}
event: thread.run.in_progress
data: {"id":"run_123","object":"thread.run","created_at":1710348075,"assistant_id":"asst_123","thread_id":"thread_123","status":"in_progress","started_at":null,"expires_at":1710348675,"cancelled_at":null,"failed_at":null,"completed_at":null,"required_action":null,"last_error":null,"model":"gpt-4-turbo","instructions":null,"tools":[],"tool_resources":{},"metadata":{},"temperature":1.0,"top_p":1.0,"max_completion_tokens":null,"max_prompt_tokens":null,"truncation_strategy":{"type":"auto","last_messages":null},"incomplete_details":null,"usage":null,"response_format":"auto","tool_choice":"auto"}
event: thread.run.step.created
data: {"id":"step_001","object":"thread.run.step","created_at":1710348076,"run_id":"run_123","assistant_id":"asst_123","thread_id":"thread_123","type":"message_creation","status":"in_progress","cancelled_at":null,"completed_at":null,"expires_at":1710348675,"failed_at":null,"last_error":null,"step_details":{"type":"message_creation","message_creation":{"message_id":"msg_001"}},"usage":null}
event: thread.run.step.in_progress
data: {"id":"step_001","object":"thread.run.step","created_at":1710348076,"run_id":"run_123","assistant_id":"asst_123","thread_id":"thread_123","type":"message_creation","status":"in_progress","cancelled_at":null,"completed_at":null,"expires_at":1710348675,"failed_at":null,"last_error":null,"step_details":{"type":"message_creation","message_creation":{"message_id":"msg_001"}},"usage":null}
event: thread.message.created
data: {"id":"msg_001","object":"thread.message","created_at":1710348076,"assistant_id":"asst_123","thread_id":"thread_123","run_id":"run_123","status":"in_progress","incomplete_details":null,"incomplete_at":null,"completed_at":null,"role":"assistant","content":[], "metadata":{}}
event: thread.message.in_progress
data: {"id":"msg_001","object":"thread.message","created_at":1710348076,"assistant_id":"asst_123","thread_id":"thread_123","run_id":"run_123","status":"in_progress","incomplete_details":null,"incomplete_at":null,"completed_at":null,"role":"assistant","content":[], "metadata":{}}
event: thread.message.delta
data: {"id":"msg_001","object":"thread.message.delta","delta":{"content":[{"index":0,"type":"text","text":{"value":"Hello","annotations":[]}}]}}
...
event: thread.message.delta
data: {"id":"msg_001","object":"thread.message.delta","delta":{"content":[{"index":0,"type":"text","text":{"value":" today"}}]}}
event: thread.message.delta
data: {"id":"msg_001","object":"thread.message.delta","delta":{"content":[{"index":0,"type":"text","text":{"value":"?"}}]}}
event: thread.message.completed
data: {"id":"msg_001","object":"thread.message","created_at":1710348076,"assistant_id":"asst_123","thread_id":"thread_123","run_id":"run_123","status":"completed","incomplete_details":null,"incomplete_at":null,"completed_at":1710348077,"role":"assistant","content":[{"type":"text","text":{"value":"Hello! How can I assist you today?","annotations":[]}}], "metadata":{}}
event: thread.run.step.completed
data: {"id":"step_001","object":"thread.run.step","created_at":1710348076,"run_id":"run_123","assistant_id":"asst_123","thread_id":"thread_123","type":"message_creation","status":"completed","cancelled_at":null,"completed_at":1710348077,"expires_at":1710348675,"failed_at":null,"last_error":null,"step_details":{"type":"message_creation","message_creation":{"message_id":"msg_001"}},"usage":{"prompt_tokens":20,"completion_tokens":11,"total_tokens":31}}
event: thread.run.completed
{"id":"run_123","object":"thread.run","created_at":1710348076,"assistant_id":"asst_123","thread_id":"thread_123","status":"completed","started_at":1713226836,"expires_at":null,"cancelled_at":null,"failed_at":null,"completed_at":1713226837,"required_action":null,"last_error":null,"model":"gpt-4-turbo","instructions":null,"tools":[],"metadata":{},"temperature":1.0,"top_p":1.0,"max_completion_tokens":null,"max_prompt_tokens":null,"truncation_strategy":{"type":"auto","last_messages":null},"incomplete_details":null,"usage":{"prompt_tokens":345,"completion_tokens":11,"total_tokens":356},"response_format":"auto","tool_choice":"auto"}
event: done
data: [DONE]
- title: Streaming with Functions
request:
curl: |
curl https://api.openai.com/v1/threads/runs \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "Content-Type: application/json" \
-H "OpenAI-Beta: assistants=v2" \
-d '{
"assistant_id": "asst_abc123",
"thread": {
"messages": [
{"role": "user", "content": "What is the weather like in San Francisco?"}
]
},
"tools": [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA"
},
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"]
}
},
"required": ["location"]
}
}
}
],
"stream": true
}'
python: |
from openai import OpenAI
client = OpenAI()
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
}
}
]
stream = client.beta.threads.create_and_run(
thread={
"messages": [
{"role": "user", "content": "What is the weather like in San Francisco?"}
]
},
assistant_id="asst_abc123",
tools=tools,
stream=True
)
for event in stream:
print(event)
node.js: |
import OpenAI from "openai";
const openai = new OpenAI();
const tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
}
}
];
async function main() {
const stream = await openai.beta.threads.createAndRun({
assistant_id: "asst_123",
thread: {
messages: [
{ role: "user", content: "What is the weather like in San Francisco?" },
],
},
tools: tools,
stream: true
});
for await (const event of stream) {
console.log(event);
}
}
main();
response: |
event: thread.created
data: {"id":"thread_123","object":"thread","created_at":1710351818,"metadata":{}}
event: thread.run.created
data: {"id":"run_123","object":"thread.run","created_at":1710351818,"assistant_id":"asst_123","thread_id":"thread_123","status":"queued","started_at":null,"expires_at":1710352418,"cancelled_at":null,"failed_at":null,"completed_at":null,"required_action":null,"last_error":null,"model":"gpt-4-turbo","instructions":null,"tools":[{"type":"function","function":{"name":"get_current_weather","description":"Get the current weather in a given location","parameters":{"type":"object","properties":{"location":{"type":"string","description":"The city and state, e.g. San Francisco, CA"},"unit":{"type":"string","enum":["celsius","fahrenheit"]}},"required":["location"]}}}],"metadata":{},"temperature":1.0,"top_p":1.0,"max_completion_tokens":null,"max_prompt_tokens":null,"truncation_strategy":{"type":"auto","last_messages":null},"incomplete_details":null,"usage":null,"response_format":"auto","tool_choice":"auto"}}
event: thread.run.queued
data: {"id":"run_123","object":"thread.run","created_at":1710351818,"assistant_id":"asst_123","thread_id":"thread_123","status":"queued","started_at":null,"expires_at":1710352418,"cancelled_at":null,"failed_at":null,"completed_at":null,"required_action":null,"last_error":null,"model":"gpt-4-turbo","instructions":null,"tools":[{"type":"function","function":{"name":"get_current_weather","description":"Get the current weather in a given location","parameters":{"type":"object","properties":{"location":{"type":"string","description":"The city and state, e.g. San Francisco, CA"},"unit":{"type":"string","enum":["celsius","fahrenheit"]}},"required":["location"]}}}],"metadata":{},"temperature":1.0,"top_p":1.0,"max_completion_tokens":null,"max_prompt_tokens":null,"truncation_strategy":{"type":"auto","last_messages":null},"incomplete_details":null,"usage":null,"response_format":"auto","tool_choice":"auto"}}
event: thread.run.in_progress
data: {"id":"run_123","object":"thread.run","created_at":1710351818,"assistant_id":"asst_123","thread_id":"thread_123","status":"in_progress","started_at":1710351818,"expires_at":1710352418,"cancelled_at":null,"failed_at":null,"completed_at":null,"required_action":null,"last_error":null,"model":"gpt-4-turbo","instructions":null,"tools":[{"type":"function","function":{"name":"get_current_weather","description":"Get the current weather in a given location","parameters":{"type":"object","properties":{"location":{"type":"string","description":"The city and state, e.g. San Francisco, CA"},"unit":{"type":"string","enum":["celsius","fahrenheit"]}},"required":["location"]}}}],"metadata":{},"temperature":1.0,"top_p":1.0,"max_completion_tokens":null,"max_prompt_tokens":null,"truncation_strategy":{"type":"auto","last_messages":null},"incomplete_details":null,"usage":null,"response_format":"auto","tool_choice":"auto"}}
event: thread.run.step.created
data: {"id":"step_001","object":"thread.run.step","created_at":1710351819,"run_id":"run_123","assistant_id":"asst_123","thread_id":"thread_123","type":"tool_calls","status":"in_progress","cancelled_at":null,"completed_at":null,"expires_at":1710352418,"failed_at":null,"last_error":null,"step_details":{"type":"tool_calls","tool_calls":[]},"usage":null}
event: thread.run.step.in_progress
data: {"id":"step_001","object":"thread.run.step","created_at":1710351819,"run_id":"run_123","assistant_id":"asst_123","thread_id":"thread_123","type":"tool_calls","status":"in_progress","cancelled_at":null,"completed_at":null,"expires_at":1710352418,"failed_at":null,"last_error":null,"step_details":{"type":"tool_calls","tool_calls":[]},"usage":null}
event: thread.run.step.delta
data: {"id":"step_001","object":"thread.run.step.delta","delta":{"step_details":{"type":"tool_calls","tool_calls":[{"index":0,"id":"call_XXNp8YGaFrjrSjgqxtC8JJ1B","type":"function","function":{"name":"get_current_weather","arguments":"","output":null}}]}}}
event: thread.run.step.delta
data: {"id":"step_001","object":"thread.run.step.delta","delta":{"step_details":{"type":"tool_calls","tool_calls":[{"index":0,"type":"function","function":{"arguments":"{\""}}]}}}
event: thread.run.step.delta
data: {"id":"step_001","object":"thread.run.step.delta","delta":{"step_details":{"type":"tool_calls","tool_calls":[{"index":0,"type":"function","function":{"arguments":"location"}}]}}}
...
event: thread.run.step.delta
data: {"id":"step_001","object":"thread.run.step.delta","delta":{"step_details":{"type":"tool_calls","tool_calls":[{"index":0,"type":"function","function":{"arguments":"ahrenheit"}}]}}}
event: thread.run.step.delta
data: {"id":"step_001","object":"thread.run.step.delta","delta":{"step_details":{"type":"tool_calls","tool_calls":[{"index":0,"type":"function","function":{"arguments":"\"}"}}]}}}
event: thread.run.requires_action
data: {"id":"run_123","object":"thread.run","created_at":1710351818,"assistant_id":"asst_123","thread_id":"thread_123","status":"requires_action","started_at":1710351818,"expires_at":1710352418,"cancelled_at":null,"failed_at":null,"completed_at":null,"required_action":{"type":"submit_tool_outputs","submit_tool_outputs":{"tool_calls":[{"id":"call_XXNp8YGaFrjrSjgqxtC8JJ1B","type":"function","function":{"name":"get_current_weather","arguments":"{\"location\":\"San Francisco, CA\",\"unit\":\"fahrenheit\"}"}}]}},"last_error":null,"model":"gpt-4-turbo","instructions":null,"tools":[{"type":"function","function":{"name":"get_current_weather","description":"Get the current weather in a given location","parameters":{"type":"object","properties":{"location":{"type":"string","description":"The city and state, e.g. San Francisco, CA"},"unit":{"type":"string","enum":["celsius","fahrenheit"]}},"required":["location"]}}}],"metadata":{},"temperature":1.0,"top_p":1.0,"max_completion_tokens":null,"max_prompt_tokens":null,"truncation_strategy":{"type":"auto","last_messages":null},"incomplete_details":null,"usage":{"prompt_tokens":345,"completion_tokens":11,"total_tokens":356},"response_format":"auto","tool_choice":"auto"}}
event: done
data: [DONE]
/threads/{thread_id}/runs:
get:
operationId: listRuns
tags:
- Assistants
summary: Returns a list of runs belonging to a thread.
parameters:
- name: thread_id
in: path
required: true
schema:
type: string
description: The ID of the thread the run belongs to.
- name: limit
in: query
description: *pagination_limit_param_description
required: false
schema:
type: integer
default: 20
- name: order
in: query
description: *pagination_order_param_description
schema:
type: string
default: desc
enum: ["asc", "desc"]
- name: after
in: query
description: *pagination_after_param_description
schema:
type: string
- name: before
in: query
description: *pagination_before_param_description
schema:
type: string
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/ListRunsResponse"
x-oaiMeta:
name: List runs
group: threads
beta: true
returns: A list of [run](/docs/api-reference/runs/object) objects.
examples:
request:
curl: |
curl https://api.openai.com/v1/threads/thread_abc123/runs \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "Content-Type: application/json" \
-H "OpenAI-Beta: assistants=v2"
python: |
from openai import OpenAI
client = OpenAI()
runs = client.beta.threads.runs.list(
"thread_abc123"
)
print(runs)
node.js: |
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const runs = await openai.beta.threads.runs.list(
"thread_abc123"
);
console.log(runs);
}
main();
response: |
{
"object": "list",
"data": [
{
"id": "run_abc123",
"object": "thread.run",
"created_at": 1699075072,
"assistant_id": "asst_abc123",
"thread_id": "thread_abc123",
"status": "completed",
"started_at": 1699075072,
"expires_at": null,
"cancelled_at": null,
"failed_at": null,
"completed_at": 1699075073,
"last_error": null,
"model": "gpt-4-turbo",
"instructions": null,
"incomplete_details": null,
"tools": [
{
"type": "code_interpreter"
}
],
"tool_resources": {
"code_interpreter": {
"file_ids": [
"file-abc123",
"file-abc456"
]
}
},
"metadata": {},
"usage": {
"prompt_tokens": 123,
"completion_tokens": 456,
"total_tokens": 579
},
"temperature": 1.0,
"top_p": 1.0,
"max_prompt_tokens": 1000,
"max_completion_tokens": 1000,
"truncation_strategy": {
"type": "auto",
"last_messages": null
},
"response_format": "auto",
"tool_choice": "auto"
},
{
"id": "run_abc456",
"object": "thread.run",
"created_at": 1699063290,
"assistant_id": "asst_abc123",
"thread_id": "thread_abc123",
"status": "completed",
"started_at": 1699063290,
"expires_at": null,
"cancelled_at": null,
"failed_at": null,
"completed_at": 1699063291,
"last_error": null,
"model": "gpt-4-turbo",
"instructions": null,
"incomplete_details": null,
"tools": [
{
"type": "code_interpreter"
}
],
"tool_resources": {
"code_interpreter": {
"file_ids": [
"file-abc123",
"file-abc456"
]
}
},
"metadata": {},
"usage": {
"prompt_tokens": 123,
"completion_tokens": 456,
"total_tokens": 579
},
"temperature": 1.0,
"top_p": 1.0,
"max_prompt_tokens": 1000,
"max_completion_tokens": 1000,
"truncation_strategy": {
"type": "auto",
"last_messages": null
},
"response_format": "auto",
"tool_choice": "auto"
}
],
"first_id": "run_abc123",
"last_id": "run_abc456",
"has_more": false
}
post:
operationId: createRun
tags:
- Assistants
summary: Create a run.
parameters:
- in: path
name: thread_id
required: true
schema:
type: string
description: The ID of the thread to run.
requestBody:
required: true
content:
application/json:
schema:
$ref: "#/components/schemas/CreateRunRequest"
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/RunObject"
x-oaiMeta:
name: Create run
group: threads
beta: true
returns: A [run](/docs/api-reference/runs/object) object.
examples:
- title: Default
request:
curl: |
curl https://api.openai.com/v1/threads/thread_abc123/runs \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "Content-Type: application/json" \
-H "OpenAI-Beta: assistants=v2" \
-d '{
"assistant_id": "asst_abc123"
}'
python: |
from openai import OpenAI
client = OpenAI()
run = client.beta.threads.runs.create(
thread_id="thread_abc123",
assistant_id="asst_abc123"
)
print(run)
node.js: |
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const run = await openai.beta.threads.runs.create(
"thread_abc123",
{ assistant_id: "asst_abc123" }
);
console.log(run);
}
main();
response: &run_object_example |
{
"id": "run_abc123",
"object": "thread.run",
"created_at": 1699063290,
"assistant_id": "asst_abc123",
"thread_id": "thread_abc123",
"status": "queued",
"started_at": 1699063290,
"expires_at": null,
"cancelled_at": null,
"failed_at": null,
"completed_at": 1699063291,
"last_error": null,
"model": "gpt-4-turbo",
"instructions": null,
"incomplete_details": null,
"tools": [
{
"type": "code_interpreter"
}
],
"metadata": {},
"usage": null,
"temperature": 1.0,
"top_p": 1.0,
"max_prompt_tokens": 1000,
"max_completion_tokens": 1000,
"truncation_strategy": {
"type": "auto",
"last_messages": null
},
"response_format": "auto",
"tool_choice": "auto"
}
- title: Streaming
request:
curl: |
curl https://api.openai.com/v1/threads/thread_123/runs \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "Content-Type: application/json" \
-H "OpenAI-Beta: assistants=v2" \
-d '{
"assistant_id": "asst_123",
"stream": true
}'
python: |
from openai import OpenAI
client = OpenAI()
stream = client.beta.threads.runs.create(
thread_id="thread_123",
assistant_id="asst_123",
stream=True
)
for event in stream:
print(event)
node.js: |
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const stream = await openai.beta.threads.runs.create(
"thread_123",
{ assistant_id: "asst_123", stream: true }
);
for await (const event of stream) {
console.log(event);
}
}
main();
response: |
event: thread.run.created
data: {"id":"run_123","object":"thread.run","created_at":1710330640,"assistant_id":"asst_123","thread_id":"thread_123","status":"queued","started_at":null,"expires_at":1710331240,"cancelled_at":null,"failed_at":null,"completed_at":null,"required_action":null,"last_error":null,"model":"gpt-4-turbo","instructions":null,"tools":[],"metadata":{},"temperature":1.0,"top_p":1.0,"max_completion_tokens":null,"max_prompt_tokens":null,"truncation_strategy":{"type":"auto","last_messages":null},"incomplete_details":null,"usage":null,"response_format":"auto","tool_choice":"auto"}}
event: thread.run.queued
data: {"id":"run_123","object":"thread.run","created_at":1710330640,"assistant_id":"asst_123","thread_id":"thread_123","status":"queued","started_at":null,"expires_at":1710331240,"cancelled_at":null,"failed_at":null,"completed_at":null,"required_action":null,"last_error":null,"model":"gpt-4-turbo","instructions":null,"tools":[],"metadata":{},"temperature":1.0,"top_p":1.0,"max_completion_tokens":null,"max_prompt_tokens":null,"truncation_strategy":{"type":"auto","last_messages":null},"incomplete_details":null,"usage":null,"response_format":"auto","tool_choice":"auto"}}
event: thread.run.in_progress
data: {"id":"run_123","object":"thread.run","created_at":1710330640,"assistant_id":"asst_123","thread_id":"thread_123","status":"in_progress","started_at":1710330641,"expires_at":1710331240,"cancelled_at":null,"failed_at":null,"completed_at":null,"required_action":null,"last_error":null,"model":"gpt-4-turbo","instructions":null,"tools":[],"metadata":{},"temperature":1.0,"top_p":1.0,"max_completion_tokens":null,"max_prompt_tokens":null,"truncation_strategy":{"type":"auto","last_messages":null},"incomplete_details":null,"usage":null,"response_format":"auto","tool_choice":"auto"}}
event: thread.run.step.created
data: {"id":"step_001","object":"thread.run.step","created_at":1710330641,"run_id":"run_123","assistant_id":"asst_123","thread_id":"thread_123","type":"message_creation","status":"in_progress","cancelled_at":null,"completed_at":null,"expires_at":1710331240,"failed_at":null,"last_error":null,"step_details":{"type":"message_creation","message_creation":{"message_id":"msg_001"}},"usage":null}
event: thread.run.step.in_progress
data: {"id":"step_001","object":"thread.run.step","created_at":1710330641,"run_id":"run_123","assistant_id":"asst_123","thread_id":"thread_123","type":"message_creation","status":"in_progress","cancelled_at":null,"completed_at":null,"expires_at":1710331240,"failed_at":null,"last_error":null,"step_details":{"type":"message_creation","message_creation":{"message_id":"msg_001"}},"usage":null}
event: thread.message.created
data: {"id":"msg_001","object":"thread.message","created_at":1710330641,"assistant_id":"asst_123","thread_id":"thread_123","run_id":"run_123","status":"in_progress","incomplete_details":null,"incomplete_at":null,"completed_at":null,"role":"assistant","content":[],"metadata":{}}
event: thread.message.in_progress
data: {"id":"msg_001","object":"thread.message","created_at":1710330641,"assistant_id":"asst_123","thread_id":"thread_123","run_id":"run_123","status":"in_progress","incomplete_details":null,"incomplete_at":null,"completed_at":null,"role":"assistant","content":[],"metadata":{}}
event: thread.message.delta
data: {"id":"msg_001","object":"thread.message.delta","delta":{"content":[{"index":0,"type":"text","text":{"value":"Hello","annotations":[]}}]}}
...
event: thread.message.delta
data: {"id":"msg_001","object":"thread.message.delta","delta":{"content":[{"index":0,"type":"text","text":{"value":" today"}}]}}
event: thread.message.delta
data: {"id":"msg_001","object":"thread.message.delta","delta":{"content":[{"index":0,"type":"text","text":{"value":"?"}}]}}
event: thread.message.completed
data: {"id":"msg_001","object":"thread.message","created_at":1710330641,"assistant_id":"asst_123","thread_id":"thread_123","run_id":"run_123","status":"completed","incomplete_details":null,"incomplete_at":null,"completed_at":1710330642,"role":"assistant","content":[{"type":"text","text":{"value":"Hello! How can I assist you today?","annotations":[]}}],"metadata":{}}
event: thread.run.step.completed
data: {"id":"step_001","object":"thread.run.step","created_at":1710330641,"run_id":"run_123","assistant_id":"asst_123","thread_id":"thread_123","type":"message_creation","status":"completed","cancelled_at":null,"completed_at":1710330642,"expires_at":1710331240,"failed_at":null,"last_error":null,"step_details":{"type":"message_creation","message_creation":{"message_id":"msg_001"}},"usage":{"prompt_tokens":20,"completion_tokens":11,"total_tokens":31}}
event: thread.run.completed
data: {"id":"run_123","object":"thread.run","created_at":1710330640,"assistant_id":"asst_123","thread_id":"thread_123","status":"completed","started_at":1710330641,"expires_at":null,"cancelled_at":null,"failed_at":null,"completed_at":1710330642,"required_action":null,"last_error":null,"model":"gpt-4-turbo","instructions":null,"tools":[],"metadata":{},"temperature":1.0,"top_p":1.0,"max_completion_tokens":null,"max_prompt_tokens":null,"truncation_strategy":{"type":"auto","last_messages":null},"incomplete_details":null,"usage":{"prompt_tokens":20,"completion_tokens":11,"total_tokens":31},"response_format":"auto","tool_choice":"auto"}}
event: done
data: [DONE]
- title: Streaming with Functions
request:
curl: |
curl https://api.openai.com/v1/threads/thread_abc123/runs \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "Content-Type: application/json" \
-H "OpenAI-Beta: assistants=v2" \
-d '{
"assistant_id": "asst_abc123",
"tools": [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA"
},
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"]
}
},
"required": ["location"]
}
}
}
],
"stream": true
}'
python: |
from openai import OpenAI
client = OpenAI()
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
}
}
]
stream = client.beta.threads.runs.create(
thread_id="thread_abc123",
assistant_id="asst_abc123",
tools=tools,
stream=True
)
for event in stream:
print(event)
node.js: |
import OpenAI from "openai";
const openai = new OpenAI();
const tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
}
}
];
async function main() {
const stream = await openai.beta.threads.runs.create(
"thread_abc123",
{
assistant_id: "asst_abc123",
tools: tools,
stream: true
}
);
for await (const event of stream) {
console.log(event);
}
}
main();
response: |
event: thread.run.created
data: {"id":"run_123","object":"thread.run","created_at":1710348075,"assistant_id":"asst_123","thread_id":"thread_123","status":"queued","started_at":null,"expires_at":1710348675,"cancelled_at":null,"failed_at":null,"completed_at":null,"required_action":null,"last_error":null,"model":"gpt-4-turbo","instructions":null,"tools":[],"metadata":{},"temperature":1.0,"top_p":1.0,"max_completion_tokens":null,"max_prompt_tokens":null,"truncation_strategy":{"type":"auto","last_messages":null},"incomplete_details":null,"usage":null,"response_format":"auto","tool_choice":"auto"}}
event: thread.run.queued
data: {"id":"run_123","object":"thread.run","created_at":1710348075,"assistant_id":"asst_123","thread_id":"thread_123","status":"queued","started_at":null,"expires_at":1710348675,"cancelled_at":null,"failed_at":null,"completed_at":null,"required_action":null,"last_error":null,"model":"gpt-4-turbo","instructions":null,"tools":[],"metadata":{},"temperature":1.0,"top_p":1.0,"max_completion_tokens":null,"max_prompt_tokens":null,"truncation_strategy":{"type":"auto","last_messages":null},"incomplete_details":null,"usage":null,"response_format":"auto","tool_choice":"auto"}}
event: thread.run.in_progress
data: {"id":"run_123","object":"thread.run","created_at":1710348075,"assistant_id":"asst_123","thread_id":"thread_123","status":"in_progress","started_at":1710348075,"expires_at":1710348675,"cancelled_at":null,"failed_at":null,"completed_at":null,"required_action":null,"last_error":null,"model":"gpt-4-turbo","instructions":null,"tools":[],"metadata":{},"temperature":1.0,"top_p":1.0,"max_completion_tokens":null,"max_prompt_tokens":null,"truncation_strategy":{"type":"auto","last_messages":null},"incomplete_details":null,"usage":null,"response_format":"auto","tool_choice":"auto"}}
event: thread.run.step.created
data: {"id":"step_001","object":"thread.run.step","created_at":1710348076,"run_id":"run_123","assistant_id":"asst_123","thread_id":"thread_123","type":"message_creation","status":"in_progress","cancelled_at":null,"completed_at":null,"expires_at":1710348675,"failed_at":null,"last_error":null,"step_details":{"type":"message_creation","message_creation":{"message_id":"msg_001"}},"usage":null}
event: thread.run.step.in_progress
data: {"id":"step_001","object":"thread.run.step","created_at":1710348076,"run_id":"run_123","assistant_id":"asst_123","thread_id":"thread_123","type":"message_creation","status":"in_progress","cancelled_at":null,"completed_at":null,"expires_at":1710348675,"failed_at":null,"last_error":null,"step_details":{"type":"message_creation","message_creation":{"message_id":"msg_001"}},"usage":null}
event: thread.message.created
data: {"id":"msg_001","object":"thread.message","created_at":1710348076,"assistant_id":"asst_123","thread_id":"thread_123","run_id":"run_123","status":"in_progress","incomplete_details":null,"incomplete_at":null,"completed_at":null,"role":"assistant","content":[],"metadata":{}}
event: thread.message.in_progress
data: {"id":"msg_001","object":"thread.message","created_at":1710348076,"assistant_id":"asst_123","thread_id":"thread_123","run_id":"run_123","status":"in_progress","incomplete_details":null,"incomplete_at":null,"completed_at":null,"role":"assistant","content":[],"metadata":{}}
event: thread.message.delta
data: {"id":"msg_001","object":"thread.message.delta","delta":{"content":[{"index":0,"type":"text","text":{"value":"Hello","annotations":[]}}]}}
...
event: thread.message.delta
data: {"id":"msg_001","object":"thread.message.delta","delta":{"content":[{"index":0,"type":"text","text":{"value":" today"}}]}}
event: thread.message.delta
data: {"id":"msg_001","object":"thread.message.delta","delta":{"content":[{"index":0,"type":"text","text":{"value":"?"}}]}}
event: thread.message.completed
data: {"id":"msg_001","object":"thread.message","created_at":1710348076,"assistant_id":"asst_123","thread_id":"thread_123","run_id":"run_123","status":"completed","incomplete_details":null,"incomplete_at":null,"completed_at":1710348077,"role":"assistant","content":[{"type":"text","text":{"value":"Hello! How can I assist you today?","annotations":[]}}],"metadata":{}}
event: thread.run.step.completed
data: {"id":"step_001","object":"thread.run.step","created_at":1710348076,"run_id":"run_123","assistant_id":"asst_123","thread_id":"thread_123","type":"message_creation","status":"completed","cancelled_at":null,"completed_at":1710348077,"expires_at":1710348675,"failed_at":null,"last_error":null,"step_details":{"type":"message_creation","message_creation":{"message_id":"msg_001"}},"usage":{"prompt_tokens":20,"completion_tokens":11,"total_tokens":31}}
event: thread.run.completed
data: {"id":"run_123","object":"thread.run","created_at":1710348075,"assistant_id":"asst_123","thread_id":"thread_123","status":"completed","started_at":1710348075,"expires_at":null,"cancelled_at":null,"failed_at":null,"completed_at":1710348077,"required_action":null,"last_error":null,"model":"gpt-4-turbo","instructions":null,"tools":[],"metadata":{},"temperature":1.0,"top_p":1.0,"max_completion_tokens":null,"max_prompt_tokens":null,"truncation_strategy":{"type":"auto","last_messages":null},"incomplete_details":null,"usage":{"prompt_tokens":20,"completion_tokens":11,"total_tokens":31},"response_format":"auto","tool_choice":"auto"}}
event: done
data: [DONE]
/threads/{thread_id}/runs/{run_id}:
get:
operationId: getRun
tags:
- Assistants
summary: Retrieves a run.
parameters:
- in: path
name: thread_id
required: true
schema:
type: string
description: The ID of the [thread](/docs/api-reference/threads) that was run.
- in: path
name: run_id
required: true
schema:
type: string
description: The ID of the run to retrieve.
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/RunObject"
x-oaiMeta:
name: Retrieve run
group: threads
beta: true
returns: The [run](/docs/api-reference/runs/object) object matching the specified ID.
examples:
request:
curl: |
curl https://api.openai.com/v1/threads/thread_abc123/runs/run_abc123 \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "OpenAI-Beta: assistants=v2"
python: |
from openai import OpenAI
client = OpenAI()
run = client.beta.threads.runs.retrieve(
thread_id="thread_abc123",
run_id="run_abc123"
)
print(run)
node.js: |
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const run = await openai.beta.threads.runs.retrieve(
"thread_abc123",
"run_abc123"
);
console.log(run);
}
main();
response: |
{
"id": "run_abc123",
"object": "thread.run",
"created_at": 1699075072,
"assistant_id": "asst_abc123",
"thread_id": "thread_abc123",
"status": "completed",
"started_at": 1699075072,
"expires_at": null,
"cancelled_at": null,
"failed_at": null,
"completed_at": 1699075073,
"last_error": null,
"model": "gpt-4-turbo",
"instructions": null,
"incomplete_details": null,
"tools": [
{
"type": "code_interpreter"
}
],
"metadata": {},
"usage": {
"prompt_tokens": 123,
"completion_tokens": 456,
"total_tokens": 579
},
"temperature": 1.0,
"top_p": 1.0,
"max_prompt_tokens": 1000,
"max_completion_tokens": 1000,
"truncation_strategy": {
"type": "auto",
"last_messages": null
},
"response_format": "auto",
"tool_choice": "auto"
}
post:
operationId: modifyRun
tags:
- Assistants
summary: Modifies a run.
parameters:
- in: path
name: thread_id
required: true
schema:
type: string
description: The ID of the [thread](/docs/api-reference/threads) that was run.
- in: path
name: run_id
required: true
schema:
type: string
description: The ID of the run to modify.
requestBody:
required: true
content:
application/json:
schema:
$ref: "#/components/schemas/ModifyRunRequest"
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/RunObject"
x-oaiMeta:
name: Modify run
group: threads
beta: true
returns: The modified [run](/docs/api-reference/runs/object) object matching the specified ID.
examples:
request:
curl: |
curl https://api.openai.com/v1/threads/thread_abc123/runs/run_abc123 \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "Content-Type: application/json" \
-H "OpenAI-Beta: assistants=v2" \
-d '{
"metadata": {
"user_id": "user_abc123"
}
}'
python: |
from openai import OpenAI
client = OpenAI()
run = client.beta.threads.runs.update(
thread_id="thread_abc123",
run_id="run_abc123",
metadata={"user_id": "user_abc123"},
)
print(run)
node.js: |
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const run = await openai.beta.threads.runs.update(
"thread_abc123",
"run_abc123",
{
metadata: {
user_id: "user_abc123",
},
}
);
console.log(run);
}
main();
response: |
{
"id": "run_abc123",
"object": "thread.run",
"created_at": 1699075072,
"assistant_id": "asst_abc123",
"thread_id": "thread_abc123",
"status": "completed",
"started_at": 1699075072,
"expires_at": null,
"cancelled_at": null,
"failed_at": null,
"completed_at": 1699075073,
"last_error": null,
"model": "gpt-4-turbo",
"instructions": null,
"incomplete_details": null,
"tools": [
{
"type": "code_interpreter"
}
],
"tool_resources": {
"code_interpreter": {
"file_ids": [
"file-abc123",
"file-abc456"
]
}
},
"metadata": {
"user_id": "user_abc123"
},
"usage": {
"prompt_tokens": 123,
"completion_tokens": 456,
"total_tokens": 579
},
"temperature": 1.0,
"top_p": 1.0,
"max_prompt_tokens": 1000,
"max_completion_tokens": 1000,
"truncation_strategy": {
"type": "auto",
"last_messages": null
},
"response_format": "auto",
"tool_choice": "auto"
}
/threads/{thread_id}/runs/{run_id}/submit_tool_outputs:
post:
operationId: submitToolOuputsToRun
tags:
- Assistants
summary: |
When a run has the `status: "requires_action"` and `required_action.type` is `submit_tool_outputs`, this endpoint can be used to submit the outputs from the tool calls once they're all completed. All outputs must be submitted in a single request.
parameters:
- in: path
name: thread_id
required: true
schema:
type: string
description: The ID of the [thread](/docs/api-reference/threads) to which this run belongs.
- in: path
name: run_id
required: true
schema:
type: string
description: The ID of the run that requires the tool output submission.
requestBody:
required: true
content:
application/json:
schema:
$ref: "#/components/schemas/SubmitToolOutputsRunRequest"
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/RunObject"
x-oaiMeta:
name: Submit tool outputs to run
group: threads
beta: true
returns: The modified [run](/docs/api-reference/runs/object) object matching the specified ID.
examples:
- title: Default
request:
curl: |
curl https://api.openai.com/v1/threads/thread_123/runs/run_123/submit_tool_outputs \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "Content-Type: application/json" \
-H "OpenAI-Beta: assistants=v2" \
-d '{
"tool_outputs": [
{
"tool_call_id": "call_001",
"output": "70 degrees and sunny."
}
]
}'
python: |
from openai import OpenAI
client = OpenAI()
run = client.beta.threads.runs.submit_tool_outputs(
thread_id="thread_123",
run_id="run_123",
tool_outputs=[
{
"tool_call_id": "call_001",
"output": "70 degrees and sunny."
}
]
)
print(run)
node.js: |
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const run = await openai.beta.threads.runs.submitToolOutputs(
"thread_123",
"run_123",
{
tool_outputs: [
{
tool_call_id: "call_001",
output: "70 degrees and sunny.",
},
],
}
);
console.log(run);
}
main();
response: |
{
"id": "run_123",
"object": "thread.run",
"created_at": 1699075592,
"assistant_id": "asst_123",
"thread_id": "thread_123",
"status": "queued",
"started_at": 1699075592,
"expires_at": 1699076192,
"cancelled_at": null,
"failed_at": null,
"completed_at": null,
"last_error": null,
"model": "gpt-4-turbo",
"instructions": null,
"tools": [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA"
},
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"]
}
},
"required": ["location"]
}
}
}
],
"metadata": {},
"usage": null,
"temperature": 1.0,
"top_p": 1.0,
"max_prompt_tokens": 1000,
"max_completion_tokens": 1000,
"truncation_strategy": {
"type": "auto",
"last_messages": null
},
"response_format": "auto",
"tool_choice": "auto"
}
- title: Streaming
request:
curl: |
curl https://api.openai.com/v1/threads/thread_123/runs/run_123/submit_tool_outputs \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "Content-Type: application/json" \
-H "OpenAI-Beta: assistants=v2" \
-d '{
"tool_outputs": [
{
"tool_call_id": "call_001",
"output": "70 degrees and sunny."
}
],
"stream": true
}'
python: |
from openai import OpenAI
client = OpenAI()
stream = client.beta.threads.runs.submit_tool_outputs(
thread_id="thread_123",
run_id="run_123",
tool_outputs=[
{
"tool_call_id": "call_001",
"output": "70 degrees and sunny."
}
],
stream=True
)
for event in stream:
print(event)
node.js: |
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const stream = await openai.beta.threads.runs.submitToolOutputs(
"thread_123",
"run_123",
{
tool_outputs: [
{
tool_call_id: "call_001",
output: "70 degrees and sunny.",
},
],
}
);
for await (const event of stream) {
console.log(event);
}
}
main();
response: |
event: thread.run.step.completed
data: {"id":"step_001","object":"thread.run.step","created_at":1710352449,"run_id":"run_123","assistant_id":"asst_123","thread_id":"thread_123","type":"tool_calls","status":"completed","cancelled_at":null,"completed_at":1710352475,"expires_at":1710353047,"failed_at":null,"last_error":null,"step_details":{"type":"tool_calls","tool_calls":[{"id":"call_iWr0kQ2EaYMaxNdl0v3KYkx7","type":"function","function":{"name":"get_current_weather","arguments":"{\"location\":\"San Francisco, CA\",\"unit\":\"fahrenheit\"}","output":"70 degrees and sunny."}}]},"usage":{"prompt_tokens":291,"completion_tokens":24,"total_tokens":315}}
event: thread.run.queued
data: {"id":"run_123","object":"thread.run","created_at":1710352447,"assistant_id":"asst_123","thread_id":"thread_123","status":"queued","started_at":1710352448,"expires_at":1710353047,"cancelled_at":null,"failed_at":null,"completed_at":null,"required_action":null,"last_error":null,"model":"gpt-4-turbo","instructions":null,"tools":[{"type":"function","function":{"name":"get_current_weather","description":"Get the current weather in a given location","parameters":{"type":"object","properties":{"location":{"type":"string","description":"The city and state, e.g. San Francisco, CA"},"unit":{"type":"string","enum":["celsius","fahrenheit"]}},"required":["location"]}}}],"metadata":{},"temperature":1.0,"top_p":1.0,"max_completion_tokens":null,"max_prompt_tokens":null,"truncation_strategy":{"type":"auto","last_messages":null},"incomplete_details":null,"usage":null,"response_format":"auto","tool_choice":"auto"}}
event: thread.run.in_progress
data: {"id":"run_123","object":"thread.run","created_at":1710352447,"assistant_id":"asst_123","thread_id":"thread_123","status":"in_progress","started_at":1710352475,"expires_at":1710353047,"cancelled_at":null,"failed_at":null,"completed_at":null,"required_action":null,"last_error":null,"model":"gpt-4-turbo","instructions":null,"tools":[{"type":"function","function":{"name":"get_current_weather","description":"Get the current weather in a given location","parameters":{"type":"object","properties":{"location":{"type":"string","description":"The city and state, e.g. San Francisco, CA"},"unit":{"type":"string","enum":["celsius","fahrenheit"]}},"required":["location"]}}}],"metadata":{},"temperature":1.0,"top_p":1.0,"max_completion_tokens":null,"max_prompt_tokens":null,"truncation_strategy":{"type":"auto","last_messages":null},"incomplete_details":null,"usage":null,"response_format":"auto","tool_choice":"auto"}}
event: thread.run.step.created
data: {"id":"step_002","object":"thread.run.step","created_at":1710352476,"run_id":"run_123","assistant_id":"asst_123","thread_id":"thread_123","type":"message_creation","status":"in_progress","cancelled_at":null,"completed_at":null,"expires_at":1710353047,"failed_at":null,"last_error":null,"step_details":{"type":"message_creation","message_creation":{"message_id":"msg_002"}},"usage":null}
event: thread.run.step.in_progress
data: {"id":"step_002","object":"thread.run.step","created_at":1710352476,"run_id":"run_123","assistant_id":"asst_123","thread_id":"thread_123","type":"message_creation","status":"in_progress","cancelled_at":null,"completed_at":null,"expires_at":1710353047,"failed_at":null,"last_error":null,"step_details":{"type":"message_creation","message_creation":{"message_id":"msg_002"}},"usage":null}
event: thread.message.created
data: {"id":"msg_002","object":"thread.message","created_at":1710352476,"assistant_id":"asst_123","thread_id":"thread_123","run_id":"run_123","status":"in_progress","incomplete_details":null,"incomplete_at":null,"completed_at":null,"role":"assistant","content":[],"metadata":{}}
event: thread.message.in_progress
data: {"id":"msg_002","object":"thread.message","created_at":1710352476,"assistant_id":"asst_123","thread_id":"thread_123","run_id":"run_123","status":"in_progress","incomplete_details":null,"incomplete_at":null,"completed_at":null,"role":"assistant","content":[],"metadata":{}}
event: thread.message.delta
data: {"id":"msg_002","object":"thread.message.delta","delta":{"content":[{"index":0,"type":"text","text":{"value":"The","annotations":[]}}]}}
event: thread.message.delta
data: {"id":"msg_002","object":"thread.message.delta","delta":{"content":[{"index":0,"type":"text","text":{"value":" current"}}]}}
event: thread.message.delta
data: {"id":"msg_002","object":"thread.message.delta","delta":{"content":[{"index":0,"type":"text","text":{"value":" weather"}}]}}
...
event: thread.message.delta
data: {"id":"msg_002","object":"thread.message.delta","delta":{"content":[{"index":0,"type":"text","text":{"value":" sunny"}}]}}
event: thread.message.delta
data: {"id":"msg_002","object":"thread.message.delta","delta":{"content":[{"index":0,"type":"text","text":{"value":"."}}]}}
event: thread.message.completed
data: {"id":"msg_002","object":"thread.message","created_at":1710352476,"assistant_id":"asst_123","thread_id":"thread_123","run_id":"run_123","status":"completed","incomplete_details":null,"incomplete_at":null,"completed_at":1710352477,"role":"assistant","content":[{"type":"text","text":{"value":"The current weather in San Francisco, CA is 70 degrees Fahrenheit and sunny.","annotations":[]}}],"metadata":{}}
event: thread.run.step.completed
data: {"id":"step_002","object":"thread.run.step","created_at":1710352476,"run_id":"run_123","assistant_id":"asst_123","thread_id":"thread_123","type":"message_creation","status":"completed","cancelled_at":null,"completed_at":1710352477,"expires_at":1710353047,"failed_at":null,"last_error":null,"step_details":{"type":"message_creation","message_creation":{"message_id":"msg_002"}},"usage":{"prompt_tokens":329,"completion_tokens":18,"total_tokens":347}}
event: thread.run.completed
data: {"id":"run_123","object":"thread.run","created_at":1710352447,"assistant_id":"asst_123","thread_id":"thread_123","status":"completed","started_at":1710352475,"expires_at":null,"cancelled_at":null,"failed_at":null,"completed_at":1710352477,"required_action":null,"last_error":null,"model":"gpt-4-turbo","instructions":null,"tools":[{"type":"function","function":{"name":"get_current_weather","description":"Get the current weather in a given location","parameters":{"type":"object","properties":{"location":{"type":"string","description":"The city and state, e.g. San Francisco, CA"},"unit":{"type":"string","enum":["celsius","fahrenheit"]}},"required":["location"]}}}],"metadata":{},"temperature":1.0,"top_p":1.0,"max_completion_tokens":null,"max_prompt_tokens":null,"truncation_strategy":{"type":"auto","last_messages":null},"incomplete_details":null,"usage":{"prompt_tokens":20,"completion_tokens":11,"total_tokens":31},"response_format":"auto","tool_choice":"auto"}}
event: done
data: [DONE]
/threads/{thread_id}/runs/{run_id}/cancel:
post:
operationId: cancelRun
tags:
- Assistants
summary: Cancels a run that is `in_progress`.
parameters:
- in: path
name: thread_id
required: true
schema:
type: string
description: The ID of the thread to which this run belongs.
- in: path
name: run_id
required: true
schema:
type: string
description: The ID of the run to cancel.
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/RunObject"
x-oaiMeta:
name: Cancel a run
group: threads
beta: true
returns: The modified [run](/docs/api-reference/runs/object) object matching the specified ID.
examples:
request:
curl: |
curl https://api.openai.com/v1/threads/thread_abc123/runs/run_abc123/cancel \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "OpenAI-Beta: assistants=v2" \
-X POST
python: |
from openai import OpenAI
client = OpenAI()
run = client.beta.threads.runs.cancel(
thread_id="thread_abc123",
run_id="run_abc123"
)
print(run)
node.js: |
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const run = await openai.beta.threads.runs.cancel(
"thread_abc123",
"run_abc123"
);
console.log(run);
}
main();
response: |
{
"id": "run_abc123",
"object": "thread.run",
"created_at": 1699076126,
"assistant_id": "asst_abc123",
"thread_id": "thread_abc123",
"status": "cancelling",
"started_at": 1699076126,
"expires_at": 1699076726,
"cancelled_at": null,
"failed_at": null,
"completed_at": null,
"last_error": null,
"model": "gpt-4-turbo",
"instructions": "You summarize books.",
"tools": [
{
"type": "file_search"
}
],
"tool_resources": {
"file_search": {
"vector_store_ids": ["vs_123"]
}
},
"metadata": {},
"usage": null,
"temperature": 1.0,
"top_p": 1.0,
"response_format": "auto"
}
/threads/{thread_id}/runs/{run_id}/steps:
get:
operationId: listRunSteps
tags:
- Assistants
summary: Returns a list of run steps belonging to a run.
parameters:
- name: thread_id
in: path
required: true
schema:
type: string
description: The ID of the thread the run and run steps belong to.
- name: run_id
in: path
required: true
schema:
type: string
description: The ID of the run the run steps belong to.
- name: limit
in: query
description: *pagination_limit_param_description
required: false
schema:
type: integer
default: 20
- name: order
in: query
description: *pagination_order_param_description
schema:
type: string
default: desc
enum: ["asc", "desc"]
- name: after
in: query
description: *pagination_after_param_description
schema:
type: string
- name: before
in: query
description: *pagination_before_param_description
schema:
type: string
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/ListRunStepsResponse"
x-oaiMeta:
name: List run steps
group: threads
beta: true
returns: A list of [run step](/docs/api-reference/runs/step-object) objects.
examples:
request:
curl: |
curl https://api.openai.com/v1/threads/thread_abc123/runs/run_abc123/steps \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "Content-Type: application/json" \
-H "OpenAI-Beta: assistants=v2"
python: |
from openai import OpenAI
client = OpenAI()
run_steps = client.beta.threads.runs.steps.list(
thread_id="thread_abc123",
run_id="run_abc123"
)
print(run_steps)
node.js: |
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const runStep = await openai.beta.threads.runs.steps.list(
"thread_abc123",
"run_abc123"
);
console.log(runStep);
}
main();
response: |
{
"object": "list",
"data": [
{
"id": "step_abc123",
"object": "thread.run.step",
"created_at": 1699063291,
"run_id": "run_abc123",
"assistant_id": "asst_abc123",
"thread_id": "thread_abc123",
"type": "message_creation",
"status": "completed",
"cancelled_at": null,
"completed_at": 1699063291,
"expired_at": null,
"failed_at": null,
"last_error": null,
"step_details": {
"type": "message_creation",
"message_creation": {
"message_id": "msg_abc123"
}
},
"usage": {
"prompt_tokens": 123,
"completion_tokens": 456,
"total_tokens": 579
}
}
],
"first_id": "step_abc123",
"last_id": "step_abc456",
"has_more": false
}
/threads/{thread_id}/runs/{run_id}/steps/{step_id}:
get:
operationId: getRunStep
tags:
- Assistants
summary: Retrieves a run step.
parameters:
- in: path
name: thread_id
required: true
schema:
type: string
description: The ID of the thread to which the run and run step belongs.
- in: path
name: run_id
required: true
schema:
type: string
description: The ID of the run to which the run step belongs.
- in: path
name: step_id
required: true
schema:
type: string
description: The ID of the run step to retrieve.
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/RunStepObject"
x-oaiMeta:
name: Retrieve run step
group: threads
beta: true
returns: The [run step](/docs/api-reference/runs/step-object) object matching the specified ID.
examples:
request:
curl: |
curl https://api.openai.com/v1/threads/thread_abc123/runs/run_abc123/steps/step_abc123 \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "Content-Type: application/json" \
-H "OpenAI-Beta: assistants=v2"
python: |
from openai import OpenAI
client = OpenAI()
run_step = client.beta.threads.runs.steps.retrieve(
thread_id="thread_abc123",
run_id="run_abc123",
step_id="step_abc123"
)
print(run_step)
node.js: |
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const runStep = await openai.beta.threads.runs.steps.retrieve(
"thread_abc123",
"run_abc123",
"step_abc123"
);
console.log(runStep);
}
main();
response: &run_step_object_example |
{
"id": "step_abc123",
"object": "thread.run.step",
"created_at": 1699063291,
"run_id": "run_abc123",
"assistant_id": "asst_abc123",
"thread_id": "thread_abc123",
"type": "message_creation",
"status": "completed",
"cancelled_at": null,
"completed_at": 1699063291,
"expired_at": null,
"failed_at": null,
"last_error": null,
"step_details": {
"type": "message_creation",
"message_creation": {
"message_id": "msg_abc123"
}
},
"usage": {
"prompt_tokens": 123,
"completion_tokens": 456,
"total_tokens": 579
}
}
/vector_stores:
get:
operationId: listVectorStores
tags:
- Vector Stores
summary: Returns a list of vector stores.
parameters:
- name: limit
in: query
description: *pagination_limit_param_description
required: false
schema:
type: integer
default: 20
- name: order
in: query
description: *pagination_order_param_description
schema:
type: string
default: desc
enum: ["asc", "desc"]
- name: after
in: query
description: *pagination_after_param_description
schema:
type: string
- name: before
in: query
description: *pagination_before_param_description
schema:
type: string
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/ListVectorStoresResponse"
x-oaiMeta:
name: List vector stores
group: vector_stores
beta: true
returns: A list of [vector store](/docs/api-reference/vector-stores/object) objects.
examples:
request:
curl: |
curl https://api.openai.com/v1/vector_stores \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "Content-Type: application/json" \
-H "OpenAI-Beta: assistants=v2"
python: |
from openai import OpenAI
client = OpenAI()
vector_stores = client.beta.vector_stores.list()
print(vector_stores)
node.js: |
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const vectorStores = await openai.beta.vectorStores.list();
console.log(vectorStores);
}
main();
response: |
{
"object": "list",
"data": [
{
"id": "vs_abc123",
"object": "vector_store",
"created_at": 1699061776,
"name": "Support FAQ",
"bytes": 139920,
"file_counts": {
"in_progress": 0,
"completed": 3,
"failed": 0,
"cancelled": 0,
"total": 3
}
},
{
"id": "vs_abc456",
"object": "vector_store",
"created_at": 1699061776,
"name": "Support FAQ v2",
"bytes": 139920,
"file_counts": {
"in_progress": 0,
"completed": 3,
"failed": 0,
"cancelled": 0,
"total": 3
}
}
],
"first_id": "vs_abc123",
"last_id": "vs_abc456",
"has_more": false
}
post:
operationId: createVectorStore
tags:
- Vector Stores
summary: Create a vector store.
requestBody:
required: true
content:
application/json:
schema:
$ref: "#/components/schemas/CreateVectorStoreRequest"
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/VectorStoreObject"
x-oaiMeta:
name: Create vector store
group: vector_stores
beta: true
returns: A [vector store](/docs/api-reference/vector-stores/object) object.
examples:
request:
curl: |
curl https://api.openai.com/v1/vector_stores \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "Content-Type: application/json" \
-H "OpenAI-Beta: assistants=v2"
-d '{
"name": "Support FAQ"
}'
python: |
from openai import OpenAI
client = OpenAI()
vector_store = client.beta.vector_stores.create(
name="Support FAQ"
)
print(vector_store)
node.js: |
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const vectorStore = await openai.beta.vectorStores.create({
name: "Support FAQ"
});
console.log(vectorStore);
}
main();
response: |
{
"id": "vs_abc123",
"object": "vector_store",
"created_at": 1699061776,
"name": "Support FAQ",
"bytes": 139920,
"file_counts": {
"in_progress": 0,
"completed": 3,
"failed": 0,
"cancelled": 0,
"total": 3
}
}
/vector_stores/{vector_store_id}:
get:
operationId: getVectorStore
tags:
- Vector Stores
summary: Retrieves a vector store.
parameters:
- in: path
name: vector_store_id
required: true
schema:
type: string
description: The ID of the vector store to retrieve.
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/VectorStoreObject"
x-oaiMeta:
name: Retrieve vector store
group: vector_stores
beta: true
returns: The [vector store](/docs/api-reference/vector-stores/object) object matching the specified ID.
examples:
request:
curl: |
curl https://api.openai.com/v1/vector_stores/vs_abc123 \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "Content-Type: application/json" \
-H "OpenAI-Beta: assistants=v2"
python: |
from openai import OpenAI
client = OpenAI()
vector_store = client.beta.vector_stores.retrieve(
vector_store_id="vs_abc123"
)
print(vector_store)
node.js: |
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const vectorStore = await openai.beta.vectorStores.retrieve(
"vs_abc123"
);
console.log(vectorStore);
}
main();
response: |
{
"id": "vs_abc123",
"object": "vector_store",
"created_at": 1699061776
}
post:
operationId: modifyVectorStore
tags:
- Vector Stores
summary: Modifies a vector store.
parameters:
- in: path
name: vector_store_id
required: true
schema:
type: string
description: The ID of the vector store to modify.
requestBody:
required: true
content:
application/json:
schema:
$ref: "#/components/schemas/UpdateVectorStoreRequest"
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/VectorStoreObject"
x-oaiMeta:
name: Modify vector store
group: vector_stores
beta: true
returns: The modified [vector store](/docs/api-reference/vector-stores/object) object.
examples:
request:
curl: |
curl https://api.openai.com/v1/vector_stores/vs_abc123 \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "Content-Type: application/json" \
-H "OpenAI-Beta: assistants=v2"
-d '{
"name": "Support FAQ"
}'
python: |
from openai import OpenAI
client = OpenAI()
vector_store = client.beta.vector_stores.update(
vector_store_id="vs_abc123",
name="Support FAQ"
)
print(vector_store)
node.js: |
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const vectorStore = await openai.beta.vectorStores.update(
"vs_abc123",
{
name: "Support FAQ"
}
);
console.log(vectorStore);
}
main();
response: |
{
"id": "vs_abc123",
"object": "vector_store",
"created_at": 1699061776,
"name": "Support FAQ",
"bytes": 139920,
"file_counts": {
"in_progress": 0,
"completed": 3,
"failed": 0,
"cancelled": 0,
"total": 3
}
}
delete:
operationId: deleteVectorStore
tags:
- Vector Stores
summary: Delete a vector store.
parameters:
- in: path
name: vector_store_id
required: true
schema:
type: string
description: The ID of the vector store to delete.
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/DeleteVectorStoreResponse"
x-oaiMeta:
name: Delete vector store
group: vector_stores
beta: true
returns: Deletion status
examples:
request:
curl: |
curl https://api.openai.com/v1/vector_stores/vs_abc123 \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "Content-Type: application/json" \
-H "OpenAI-Beta: assistants=v2" \
-X DELETE
python: |
from openai import OpenAI
client = OpenAI()
deleted_vector_store = client.beta.vector_stores.delete(
vector_store_id="vs_abc123"
)
print(deleted_vector_store)
node.js: |
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const deletedVectorStore = await openai.beta.vectorStores.del(
"vs_abc123"
);
console.log(deletedVectorStore);
}
main();
response: |
{
id: "vs_abc123",
object: "vector_store.deleted",
deleted: true
}
/vector_stores/{vector_store_id}/files:
get:
operationId: listVectorStoreFiles
tags:
- Vector Stores
summary: Returns a list of vector store files.
parameters:
- name: vector_store_id
in: path
description: The ID of the vector store that the files belong to.
required: true
schema:
type: string
- name: limit
in: query
description: *pagination_limit_param_description
required: false
schema:
type: integer
default: 20
- name: order
in: query
description: *pagination_order_param_description
schema:
type: string
default: desc
enum: ["asc", "desc"]
- name: after
in: query
description: *pagination_after_param_description
schema:
type: string
- name: before
in: query
description: *pagination_before_param_description
schema:
type: string
- name: filter
in: query
description: "Filter by file status. One of `in_progress`, `completed`, `failed`, `cancelled`."
schema:
type: string
enum: ["in_progress", "completed", "failed", "cancelled"]
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/ListVectorStoreFilesResponse"
x-oaiMeta:
name: List vector store files
group: vector_stores
beta: true
returns: A list of [vector store file](/docs/api-reference/vector-stores-files/file-object) objects.
examples:
request:
curl: |
curl https://api.openai.com/v1/vector_stores/vs_abc123/files \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "Content-Type: application/json" \
-H "OpenAI-Beta: assistants=v2"
python: |
from openai import OpenAI
client = OpenAI()
vector_store_files = client.beta.vector_stores.files.list(
vector_store_id="vs_abc123"
)
print(vector_store_files)
node.js: |
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const vectorStoreFiles = await openai.beta.vectorStores.files.list(
"vs_abc123"
);
console.log(vectorStoreFiles);
}
main();
response: |
{
"object": "list",
"data": [
{
"id": "file-abc123",
"object": "vector_store.file",
"created_at": 1699061776,
"vector_store_id": "vs_abc123"
},
{
"id": "file-abc456",
"object": "vector_store.file",
"created_at": 1699061776,
"vector_store_id": "vs_abc123"
}
],
"first_id": "file-abc123",
"last_id": "file-abc456",
"has_more": false
}
post:
operationId: createVectorStoreFile
tags:
- Vector Stores
summary: Create a vector store file by attaching a [File](/docs/api-reference/files) to a [vector store](/docs/api-reference/vector-stores/object).
parameters:
- in: path
name: vector_store_id
required: true
schema:
type: string
example: vs_abc123
description: |
The ID of the vector store for which to create a File.
requestBody:
required: true
content:
application/json:
schema:
$ref: "#/components/schemas/CreateVectorStoreFileRequest"
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/VectorStoreFileObject"
x-oaiMeta:
name: Create vector store file
group: vector_stores
beta: true
returns: A [vector store file](/docs/api-reference/vector-stores-files/file-object) object.
examples:
request:
curl: |
curl https://api.openai.com/v1/vector_stores/vs_abc123/files \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "Content-Type: application/json" \
-H "OpenAI-Beta: assistants=v2" \
-d '{
"file_id": "file-abc123"
}'
python: |
from openai import OpenAI
client = OpenAI()
vector_store_file = client.beta.vector_stores.files.create(
vector_store_id="vs_abc123",
file_id="file-abc123"
)
print(vector_store_file)
node.js: |
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const myVectorStoreFile = await openai.beta.vectorStores.files.create(
"vs_abc123",
{
file_id: "file-abc123"
}
);
console.log(myVectorStoreFile);
}
main();
response: |
{
"id": "file-abc123",
"object": "vector_store.file",
"created_at": 1699061776,
"usage_bytes": 1234,
"vector_store_id": "vs_abcd",
"status": "completed",
"last_error": null
}
/vector_stores/{vector_store_id}/files/{file_id}:
get:
operationId: getVectorStoreFile
tags:
- Vector Stores
summary: Retrieves a vector store file.
parameters:
- in: path
name: vector_store_id
required: true
schema:
type: string
example: vs_abc123
description: The ID of the vector store that the file belongs to.
- in: path
name: file_id
required: true
schema:
type: string
example: file-abc123
description: The ID of the file being retrieved.
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/VectorStoreFileObject"
x-oaiMeta:
name: Retrieve vector store file
group: vector_stores
beta: true
returns: The [vector store file](/docs/api-reference/vector-stores-files/file-object) object.
examples:
request:
curl: |
curl https://api.openai.com/v1/vector_stores/vs_abc123/files/file-abc123 \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "Content-Type: application/json" \
-H "OpenAI-Beta: assistants=v2"
python: |
from openai import OpenAI
client = OpenAI()
vector_store_file = client.beta.vector_stores.files.retrieve(
vector_store_id="vs_abc123",
file_id="file-abc123"
)
print(vector_store_file)
node.js: |
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const vectorStoreFile = await openai.beta.vectorStores.files.retrieve(
"vs_abc123",
"file-abc123"
);
console.log(vectorStoreFile);
}
main();
response: |
{
"id": "file-abc123",
"object": "vector_store.file",
"created_at": 1699061776,
"vector_store_id": "vs_abcd",
"status": "completed",
"last_error": null
}
delete:
operationId: deleteVectorStoreFile
tags:
- Vector Stores
summary: Delete a vector store file. This will remove the file from the vector store but the file itself will not be deleted. To delete the file, use the [delete file](/docs/api-reference/files/delete) endpoint.
parameters:
- in: path
name: vector_store_id
required: true
schema:
type: string
description: The ID of the vector store that the file belongs to.
- in: path
name: file_id
required: true
schema:
type: string
description: The ID of the file to delete.
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/DeleteVectorStoreFileResponse"
x-oaiMeta:
name: Delete vector store file
group: vector_stores
beta: true
returns: Deletion status
examples:
request:
curl: |
curl https://api.openai.com/v1/vector_stores/vs_abc123/files/file-abc123 \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "Content-Type: application/json" \
-H "OpenAI-Beta: assistants=v2" \
-X DELETE
python: |
from openai import OpenAI
client = OpenAI()
deleted_vector_store_file = client.beta.vector_stores.files.delete(
vector_store_id="vs_abc123",
file_id="file-abc123"
)
print(deleted_vector_store_file)
node.js: |
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const deletedVectorStoreFile = await openai.beta.vectorStores.files.del(
"vs_abc123",
"file-abc123"
);
console.log(deletedVectorStoreFile);
}
main();
response: |
{
id: "file-abc123",
object: "vector_store.file.deleted",
deleted: true
}
/vector_stores/{vector_store_id}/file_batches:
post:
operationId: createVectorStoreFileBatch
tags:
- Vector Stores
summary: Create a vector store file batch.
parameters:
- in: path
name: vector_store_id
required: true
schema:
type: string
example: vs_abc123
description: |
The ID of the vector store for which to create a File Batch.
requestBody:
required: true
content:
application/json:
schema:
$ref: "#/components/schemas/CreateVectorStoreFileBatchRequest"
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/VectorStoreFileBatchObject"
x-oaiMeta:
name: Create vector store file batch
group: vector_stores
beta: true
returns: A [vector store file batch](/docs/api-reference/vector-stores-file-batches/batch-object) object.
examples:
request:
curl: |
curl https://api.openai.com/v1/vector_stores/vs_abc123/file_batches \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "Content-Type: application/json \
-H "OpenAI-Beta: assistants=v2" \
-d '{
"file_ids": ["file-abc123", "file-abc456"]
}'
python: |
from openai import OpenAI
client = OpenAI()
vector_store_file_batch = client.beta.vector_stores.file_batches.create(
vector_store_id="vs_abc123",
file_ids=["file-abc123", "file-abc456"]
)
print(vector_store_file_batch)
node.js: |
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const myVectorStoreFileBatch = await openai.beta.vectorStores.fileBatches.create(
"vs_abc123",
{
file_ids: ["file-abc123", "file-abc456"]
}
);
console.log(myVectorStoreFileBatch);
}
main();
response: |
{
"id": "vsfb_abc123",
"object": "vector_store.file_batch",
"created_at": 1699061776,
"vector_store_id": "vs_abc123",
"status": "in_progress",
"file_counts": {
"in_progress": 1,
"completed": 1,
"failed": 0,
"cancelled": 0,
"total": 0,
}
}
/vector_stores/{vector_store_id}/file_batches/{batch_id}:
get:
operationId: getVectorStoreFileBatch
tags:
- Vector Stores
summary: Retrieves a vector store file batch.
parameters:
- in: path
name: vector_store_id
required: true
schema:
type: string
example: vs_abc123
description: The ID of the vector store that the file batch belongs to.
- in: path
name: batch_id
required: true
schema:
type: string
example: vsfb_abc123
description: The ID of the file batch being retrieved.
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/VectorStoreFileBatchObject"
x-oaiMeta:
name: Retrieve vector store file batch
group: vector_stores
beta: true
returns: The [vector store file batch](/docs/api-reference/vector-stores-file-batches/batch-object) object.
examples:
request:
curl: |
curl https://api.openai.com/v1/vector_stores/vs_abc123/files_batches/vsfb_abc123 \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "Content-Type: application/json" \
-H "OpenAI-Beta: assistants=v2"
python: |
from openai import OpenAI
client = OpenAI()
vector_store_file_batch = client.beta.vector_stores.file_batches.retrieve(
vector_store_id="vs_abc123",
batch_id="vsfb_abc123"
)
print(vector_store_file_batch)
node.js: |
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const vectorStoreFileBatch = await openai.beta.vectorStores.fileBatches.retrieve(
"vs_abc123",
"vsfb_abc123"
);
console.log(vectorStoreFileBatch);
}
main();
response: |
{
"id": "vsfb_abc123",
"object": "vector_store.file_batch",
"created_at": 1699061776,
"vector_store_id": "vs_abc123",
"status": "in_progress",
"file_counts": {
"in_progress": 1,
"completed": 1,
"failed": 0,
"cancelled": 0,
"total": 0,
}
}
/vector_stores/{vector_store_id}/file_batches/{batch_id}/cancel:
post:
operationId: cancelVectorStoreFileBatch
tags:
- Vector Stores
summary: Cancel a vector store file batch. This attempts to cancel the processing of files in this batch as soon as possible.
parameters:
- in: path
name: vector_store_id
required: true
schema:
type: string
description: The ID of the vector store that the file batch belongs to.
- in: path
name: batch_id
required: true
schema:
type: string
description: The ID of the file batch to cancel.
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/VectorStoreFileBatchObject"
x-oaiMeta:
name: Cancel vector store file batch
group: vector_stores
beta: true
returns: The modified vector store file batch object.
examples:
request:
curl: |
curl https://api.openai.com/v1/vector_stores/vs_abc123/files_batches/vsfb_abc123/cancel \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "Content-Type: application/json" \
-H "OpenAI-Beta: assistants=v2" \
-X POST
python: |
from openai import OpenAI
client = OpenAI()
deleted_vector_store_file_batch = client.beta.vector_stores.file_batches.cancel(
vector_store_id="vs_abc123",
file_batch_id="vsfb_abc123"
)
print(deleted_vector_store_file_batch)
node.js: |
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const deletedVectorStoreFileBatch = await openai.vector_stores.fileBatches.cancel(
"vs_abc123",
"vsfb_abc123"
);
console.log(deletedVectorStoreFileBatch);
}
main();
response: |
{
"id": "vsfb_abc123",
"object": "vector_store.file_batch",
"created_at": 1699061776,
"vector_store_id": "vs_abc123",
"status": "cancelling",
"file_counts": {
"in_progress": 12,
"completed": 3,
"failed": 0,
"cancelled": 0,
"total": 15,
}
}
/vector_stores/{vector_store_id}/file_batches/{batch_id}/files:
get:
operationId: listFilesInVectorStoreBatch
tags:
- Vector Stores
summary: Returns a list of vector store files in a batch.
parameters:
- name: vector_store_id
in: path
description: The ID of the vector store that the files belong to.
required: true
schema:
type: string
- name: batch_id
in: path
description: The ID of the file batch that the files belong to.
required: true
schema:
type: string
- name: limit
in: query
description: *pagination_limit_param_description
required: false
schema:
type: integer
default: 20
- name: order
in: query
description: *pagination_order_param_description
schema:
type: string
default: desc
enum: ["asc", "desc"]
- name: after
in: query
description: *pagination_after_param_description
schema:
type: string
- name: before
in: query
description: *pagination_before_param_description
schema:
type: string
- name: filter
in: query
description: "Filter by file status. One of `in_progress`, `completed`, `failed`, `cancelled`."
schema:
type: string
enum: ["in_progress", "completed", "failed", "cancelled"]
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/ListVectorStoreFilesResponse"
x-oaiMeta:
name: List vector store files in a batch
group: vector_stores
beta: true
returns: A list of [vector store file](/docs/api-reference/vector-stores-files/file-object) objects.
examples:
request:
curl: |
curl https://api.openai.com/v1/vector_stores/vs_abc123/files_batches/vsfb_abc123/files \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "Content-Type: application/json" \
-H "OpenAI-Beta: assistants=v2"
python: |
from openai import OpenAI
client = OpenAI()
vector_store_files = client.beta.vector_stores.file_batches.list_files(
vector_store_id="vs_abc123",
batch_id="vsfb_abc123"
)
print(vector_store_files)
node.js: |
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const vectorStoreFiles = await openai.beta.vectorStores.fileBatches.listFiles(
"vs_abc123",
"vsfb_abc123"
);
console.log(vectorStoreFiles);
}
main();
response: |
{
"object": "list",
"data": [
{
"id": "file-abc123",
"object": "vector_store.file",
"created_at": 1699061776,
"vector_store_id": "vs_abc123"
},
{
"id": "file-abc456",
"object": "vector_store.file",
"created_at": 1699061776,
"vector_store_id": "vs_abc123"
}
],
"first_id": "file-abc123",
"last_id": "file-abc456",
"has_more": false
}
/batches:
post:
summary: Creates and executes a batch from an uploaded file of requests
operationId: createBatch
tags:
- Batch
requestBody:
required: true
content:
application/json:
schema:
type: object
required:
- input_file_id
- endpoint
- completion_window
properties:
input_file_id:
type: string
description: |
The ID of an uploaded file that contains requests for the new batch.
See [upload file](/docs/api-reference/files/create) for how to upload a file.
Your input file must be formatted as a [JSONL file](/docs/api-reference/batch/requestInput), and must be uploaded with the purpose `batch`.
endpoint:
type: string
enum: ["/v1/chat/completions", "/v1/embeddings"]
description: The endpoint to be used for all requests in the batch. Currently `/v1/chat/completions` and `/v1/embeddings` are supported.
completion_window:
type: string
enum: ["24h"]
description: The time frame within which the batch should be processed. Currently only `24h` is supported.
metadata:
type: object
additionalProperties:
type: string
description: Optional custom metadata for the batch.
nullable: true
responses:
"200":
description: Batch created successfully.
content:
application/json:
schema:
$ref: "#/components/schemas/Batch"
x-oaiMeta:
name: Create batch
group: batch
returns: The created [Batch](/docs/api-reference/batch/object) object.
examples:
request:
curl: |
curl https://api.openai.com/v1/batches \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"input_file_id": "file-abc123",
"endpoint": "/v1/chat/completions",
"completion_window": "24h"
}'
python: |
from openai import OpenAI
client = OpenAI()
client.batches.create(
input_file_id="file-abc123",
endpoint="/v1/chat/completions",
completion_window="24h"
)
node: |
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const batch = await openai.batches.create({
input_file_id: "file-abc123",
endpoint: "/v1/chat/completions",
completion_window: "24h"
});
console.log(batch);
}
main();
response: |
{
"id": "batch_abc123",
"object": "batch",
"endpoint": "/v1/completions",
"errors": null,
"input_file_id": "file-abc123",
"completion_window": "24h",
"status": "validating",
"output_file_id": null,
"error_file_id": null,
"created_at": 1711471533,
"in_progress_at": null,
"expires_at": null,
"finalizing_at": null,
"completed_at": null,
"failed_at": null,
"expired_at": null,
"cancelling_at": null,
"cancelled_at": null,
"request_counts": {
"total": 0,
"completed": 0,
"failed": 0
},
"metadata": {
"customer_id": "user_123456789",
"batch_description": "Nightly eval job",
}
}
get:
operationId: listBatches
tags:
- Batch
summary: List your organization's batches.
parameters:
- in: query
name: after
required: false
schema:
type: string
description: *pagination_after_param_description
- name: limit
in: query
description: *pagination_limit_param_description
required: false
schema:
type: integer
default: 20
responses:
"200":
description: Batch listed successfully.
content:
application/json:
schema:
$ref: "#/components/schemas/ListBatchesResponse"
x-oaiMeta:
name: List batch
group: batch
returns: A list of paginated [Batch](/docs/api-reference/batch/object) objects.
examples:
request:
curl: |
curl https://api.openai.com/v1/batches?limit=2 \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "Content-Type: application/json"
python: |
from openai import OpenAI
client = OpenAI()
client.batches.list()
node: |
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const list = await openai.batches.list();
for await (const batch of list) {
console.log(batch);
}
}
main();
response: |
{
"object": "list",
"data": [
{
"id": "batch_abc123",
"object": "batch",
"endpoint": "/v1/completions",
"errors": null,
"input_file_id": "file-abc123",
"completion_window": "24h",
"status": "completed",
"output_file_id": "file-cvaTdG",
"error_file_id": "file-HOWS94",
"created_at": 1711471533,
"in_progress_at": 1711471538,
"expires_at": 1711557933,
"finalizing_at": 1711493133,
"completed_at": 1711493163,
"failed_at": null,
"expired_at": null,
"cancelling_at": null,
"cancelled_at": null,
"request_counts": {
"total": 100,
"completed": 95,
"failed": 5
},
"metadata": {
"customer_id": "user_123456789",
"batch_description": "Nightly job",
}
},
{ ... },
],
"first_id": "batch_abc123",
"last_id": "batch_abc456",
"has_more": true
}
/batches/{batch_id}:
get:
operationId: retrieveBatch
tags:
- Batch
summary: Retrieves a batch.
parameters:
- in: path
name: batch_id
required: true
schema:
type: string
description: The ID of the batch to retrieve.
responses:
"200":
description: Batch retrieved successfully.
content:
application/json:
schema:
$ref: "#/components/schemas/Batch"
x-oaiMeta:
name: Retrieve batch
group: batch
returns: The [Batch](/docs/api-reference/batch/object) object matching the specified ID.
examples:
request:
curl: |
curl https://api.openai.com/v1/batches/batch_abc123 \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "Content-Type: application/json" \
python: |
from openai import OpenAI
client = OpenAI()
client.batches.retrieve("batch_abc123")
node: |
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const batch = await openai.batches.retrieve("batch_abc123");
console.log(batch);
}
main();
response: &batch_object |
{
"id": "batch_abc123",
"object": "batch",
"endpoint": "/v1/completions",
"errors": null,
"input_file_id": "file-abc123",
"completion_window": "24h",
"status": "completed",
"output_file_id": "file-cvaTdG",
"error_file_id": "file-HOWS94",
"created_at": 1711471533,
"in_progress_at": 1711471538,
"expires_at": 1711557933,
"finalizing_at": 1711493133,
"completed_at": 1711493163,
"failed_at": null,
"expired_at": null,
"cancelling_at": null,
"cancelled_at": null,
"request_counts": {
"total": 100,
"completed": 95,
"failed": 5
},
"metadata": {
"customer_id": "user_123456789",
"batch_description": "Nightly eval job",
}
}
/batches/{batch_id}/cancel:
post:
operationId: cancelBatch
tags:
- Batch
summary: Cancels an in-progress batch.
parameters:
- in: path
name: batch_id
required: true
schema:
type: string
description: The ID of the batch to cancel.
responses:
"200":
description: Batch is cancelling. Returns the cancelling batch's details.
content:
application/json:
schema:
$ref: "#/components/schemas/Batch"
x-oaiMeta:
name: Cancel batch
group: batch
returns: The [Batch](/docs/api-reference/batch/object) object matching the specified ID.
examples:
request:
curl: |
curl https://api.openai.com/v1/batches/batch_abc123/cancel \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-H "Content-Type: application/json" \
-X POST
python: |
from openai import OpenAI
client = OpenAI()
client.batches.cancel("batch_abc123")
node: |
import OpenAI from "openai";
const openai = new OpenAI();
async function main() {
const batch = await openai.batches.cancel("batch_abc123");
console.log(batch);
}
main();
response: |
{
"id": "batch_abc123",
"object": "batch",
"endpoint": "/v1/completions",
"errors": null,
"input_file_id": "file-abc123",
"completion_window": "24h",
"status": "cancelling",
"output_file_id": null,
"error_file_id": null,
"created_at": 1711471533,
"in_progress_at": 1711471538,
"expires_at": 1711557933,
"finalizing_at": null,
"completed_at": null,
"failed_at": null,
"expired_at": null,
"cancelling_at": 1711475133,
"cancelled_at": null,
"request_counts": {
"total": 100,
"completed": 23,
"failed": 1
},
"metadata": {
"customer_id": "user_123456789",
"batch_description": "Nightly eval job",
}
}
components:
securitySchemes:
ApiKeyAuth:
type: http
scheme: "bearer"
schemas:
Error:
type: object
properties:
code:
type: string
nullable: true
message:
type: string
nullable: false
param:
type: string
nullable: true
type:
type: string
nullable: false
required:
- type
- message
- param
- code
ErrorResponse:
type: object
properties:
error:
$ref: "#/components/schemas/Error"
required:
- error
ListModelsResponse:
type: object
properties:
object:
type: string
enum: [list]
data:
type: array
items:
$ref: "#/components/schemas/Model"
required:
- object
- data
DeleteModelResponse:
type: object
properties:
id:
type: string
deleted:
type: boolean
object:
type: string
required:
- id
- object
- deleted
CreateCompletionRequest:
type: object
properties:
model:
description: &model_description |
ID of the model to use. You can use the [List models](/docs/api-reference/models/list) API to see all of your available models, or see our [Model overview](/docs/models/overview) for descriptions of them.
anyOf:
- type: string
- type: string
enum: ["gpt-3.5-turbo-instruct", "davinci-002", "babbage-002"]
x-oaiTypeLabel: string
prompt:
description: &completions_prompt_description |
The prompt(s) to generate completions for, encoded as a string, array of strings, array of tokens, or array of token arrays.
Note that <|endoftext|> is the document separator that the model sees during training, so if a prompt is not specified the model will generate as if from the beginning of a new document.
default: "<|endoftext|>"
nullable: true
oneOf:
- type: string
default: ""
example: "This is a test."
- type: array
items:
type: string
default: ""
example: "This is a test."
- type: array
minItems: 1
items:
type: integer
example: "[1212, 318, 257, 1332, 13]"
- type: array
minItems: 1
items:
type: array
minItems: 1
items:
type: integer
example: "[[1212, 318, 257, 1332, 13]]"
best_of:
type: integer
default: 1
minimum: 0
maximum: 20
nullable: true
description: &completions_best_of_description |
Generates `best_of` completions server-side and returns the "best" (the one with the highest log probability per token). Results cannot be streamed.
When used with `n`, `best_of` controls the number of candidate completions and `n` specifies how many to return `best_of` must be greater than `n`.
**Note:** Because this parameter generates many completions, it can quickly consume your token quota. Use carefully and ensure that you have reasonable settings for `max_tokens` and `stop`.
echo:
type: boolean
default: false
nullable: true
description: &completions_echo_description >
Echo back the prompt in addition to the completion
frequency_penalty:
type: number
default: 0
minimum: -2
maximum: 2
nullable: true
description: &completions_frequency_penalty_description |
Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model's likelihood to repeat the same line verbatim.
[See more information about frequency and presence penalties.](/docs/guides/text-generation/parameter-details)
logit_bias: &completions_logit_bias
type: object
x-oaiTypeLabel: map
default: null
nullable: true
additionalProperties:
type: integer
description: &completions_logit_bias_description |
Modify the likelihood of specified tokens appearing in the completion.
Accepts a JSON object that maps tokens (specified by their token ID in the GPT tokenizer) to an associated bias value from -100 to 100. You can use this [tokenizer tool](/tokenizer?view=bpe) to convert text to token IDs. Mathematically, the bias is added to the logits generated by the model prior to sampling. The exact effect will vary per model, but values between -1 and 1 should decrease or increase likelihood of selection; values like -100 or 100 should result in a ban or exclusive selection of the relevant token.
As an example, you can pass `{"50256": -100}` to prevent the <|endoftext|> token from being generated.
logprobs: &completions_logprobs_configuration
type: integer
minimum: 0
maximum: 5
default: null
nullable: true
description: &completions_logprobs_description |
Include the log probabilities on the `logprobs` most likely output tokens, as well the chosen tokens. For example, if `logprobs` is 5, the API will return a list of the 5 most likely tokens. The API will always return the `logprob` of the sampled token, so there may be up to `logprobs+1` elements in the response.
The maximum value for `logprobs` is 5.
max_tokens:
type: integer
minimum: 0
default: 16
example: 16
nullable: true
description: &completions_max_tokens_description |
The maximum number of [tokens](/tokenizer) that can be generated in the completion.
The token count of your prompt plus `max_tokens` cannot exceed the model's context length. [Example Python code](https://cookbook.openai.com/examples/how_to_count_tokens_with_tiktoken) for counting tokens.
n:
type: integer
minimum: 1
maximum: 128
default: 1
example: 1
nullable: true
description: &completions_completions_description |
How many completions to generate for each prompt.
**Note:** Because this parameter generates many completions, it can quickly consume your token quota. Use carefully and ensure that you have reasonable settings for `max_tokens` and `stop`.
presence_penalty:
type: number
default: 0
minimum: -2
maximum: 2
nullable: true
description: &completions_presence_penalty_description |
Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far, increasing the model's likelihood to talk about new topics.
[See more information about frequency and presence penalties.](/docs/guides/text-generation/parameter-details)
seed: &completions_seed_param
type: integer
minimum: -9223372036854775808
maximum: 9223372036854775807
nullable: true
description: |
If specified, our system will make a best effort to sample deterministically, such that repeated requests with the same `seed` and parameters should return the same result.
Determinism is not guaranteed, and you should refer to the `system_fingerprint` response parameter to monitor changes in the backend.
stop:
description: &completions_stop_description >
Up to 4 sequences where the API will stop generating further tokens. The returned text will not contain the stop sequence.
default: null
nullable: true
oneOf:
- type: string
default: <|endoftext|>
example: "\n"
nullable: true
- type: array
minItems: 1
maxItems: 4
items:
type: string
example: '["\n"]'
stream:
description: >
Whether to stream back partial progress. If set, tokens will be sent as data-only [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format)
as they become available, with the stream terminated by a `data: [DONE]` message. [Example Python code](https://cookbook.openai.com/examples/how_to_stream_completions).
type: boolean
nullable: true
default: false
stream_options:
$ref: "#/components/schemas/ChatCompletionStreamOptions"
suffix:
description: |
The suffix that comes after a completion of inserted text.
This parameter is only supported for `gpt-3.5-turbo-instruct`.
default: null
nullable: true
type: string
example: "test."
temperature:
type: number
minimum: 0
maximum: 2
default: 1
example: 1
nullable: true
description: &completions_temperature_description |
What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic.
We generally recommend altering this or `top_p` but not both.
top_p:
type: number
minimum: 0
maximum: 1
default: 1
example: 1
nullable: true
description: &completions_top_p_description |
An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.
We generally recommend altering this or `temperature` but not both.
user: &end_user_param_configuration
type: string
example: user-1234
description: |
A unique identifier representing your end-user, which can help OpenAI to monitor and detect abuse. [Learn more](/docs/guides/safety-best-practices/end-user-ids).
required:
- model
- prompt
CreateCompletionResponse:
type: object
description: |
Represents a completion response from the API. Note: both the streamed and non-streamed response objects share the same shape (unlike the chat endpoint).
properties:
id:
type: string
description: A unique identifier for the completion.
choices:
type: array
description: The list of completion choices the model generated for the input prompt.
items:
type: object
required:
- finish_reason
- index
- logprobs
- text
properties:
finish_reason:
type: string
description: &completion_finish_reason_description |
The reason the model stopped generating tokens. This will be `stop` if the model hit a natural stop point or a provided stop sequence,
`length` if the maximum number of tokens specified in the request was reached,
or `content_filter` if content was omitted due to a flag from our content filters.
enum: ["stop", "length", "content_filter"]
index:
type: integer
logprobs:
type: object
nullable: true
properties:
text_offset:
type: array
items:
type: integer
token_logprobs:
type: array
items:
type: number
tokens:
type: array
items:
type: string
top_logprobs:
type: array
items:
type: object
additionalProperties:
type: number
text:
type: string
created:
type: integer
description: The Unix timestamp (in seconds) of when the completion was created.
model:
type: string
description: The model used for completion.
system_fingerprint:
type: string
description: |
This fingerprint represents the backend configuration that the model runs with.
Can be used in conjunction with the `seed` request parameter to understand when backend changes have been made that might impact determinism.
object:
type: string
description: The object type, which is always "text_completion"
enum: [text_completion]
usage:
$ref: "#/components/schemas/CompletionUsage"
required:
- id
- object
- created
- model
- choices
x-oaiMeta:
name: The completion object
legacy: true
example: |
{
"id": "cmpl-uqkvlQyYK7bGYrRHQ0eXlWi7",
"object": "text_completion",
"created": 1589478378,
"model": "gpt-4-turbo",
"choices": [
{
"text": "\n\nThis is indeed a test",
"index": 0,
"logprobs": null,
"finish_reason": "length"
}
],
"usage": {
"prompt_tokens": 5,
"completion_tokens": 7,
"total_tokens": 12
}
}
ChatCompletionRequestMessageContentPart:
oneOf:
- $ref: "#/components/schemas/ChatCompletionRequestMessageContentPartText"
- $ref: "#/components/schemas/ChatCompletionRequestMessageContentPartImage"
x-oaiExpandable: true
ChatCompletionRequestMessageContentPartImage:
type: object
title: Image content part
properties:
type:
type: string
enum: ["image_url"]
description: The type of the content part.
image_url:
type: object
properties:
url:
type: string
description: Either a URL of the image or the base64 encoded image data.
format: uri
detail:
type: string
description: Specifies the detail level of the image. Learn more in the [Vision guide](/docs/guides/vision/low-or-high-fidelity-image-understanding).
enum: ["auto", "low", "high"]
default: "auto"
required:
- url
required:
- type
- image_url
ChatCompletionRequestMessageContentPartText:
type: object
title: Text content part
properties:
type:
type: string
enum: ["text"]
description: The type of the content part.
text:
type: string
description: The text content.
required:
- type
- text
ChatCompletionRequestMessage:
oneOf:
- $ref: "#/components/schemas/ChatCompletionRequestSystemMessage"
- $ref: "#/components/schemas/ChatCompletionRequestUserMessage"
- $ref: "#/components/schemas/ChatCompletionRequestAssistantMessage"
- $ref: "#/components/schemas/ChatCompletionRequestToolMessage"
- $ref: "#/components/schemas/ChatCompletionRequestFunctionMessage"
x-oaiExpandable: true
ChatCompletionRequestSystemMessage:
type: object
title: System message
properties:
content:
description: The contents of the system message.
type: string
role:
type: string
enum: ["system"]
description: The role of the messages author, in this case `system`.
name:
type: string
description: An optional name for the participant. Provides the model information to differentiate between participants of the same role.
required:
- content
- role
ChatCompletionRequestUserMessage:
type: object
title: User message
properties:
content:
description: |
The contents of the user message.
oneOf:
- type: string
description: The text contents of the message.
title: Text content
- type: array
description: An array of content parts with a defined type, each can be of type `text` or `image_url` when passing in images. You can pass multiple images by adding multiple `image_url` content parts. Image input is only supported when using the `gpt-4-visual-preview` model.
title: Array of content parts
items:
$ref: "#/components/schemas/ChatCompletionRequestMessageContentPart"
minItems: 1
x-oaiExpandable: true
role:
type: string
enum: ["user"]
description: The role of the messages author, in this case `user`.
name:
type: string
description: An optional name for the participant. Provides the model information to differentiate between participants of the same role.
required:
- content
- role
ChatCompletionRequestAssistantMessage:
type: object
title: Assistant message
properties:
content:
nullable: true
type: string
description: |
The contents of the assistant message. Required unless `tool_calls` or `function_call` is specified.
role:
type: string
enum: ["assistant"]
description: The role of the messages author, in this case `assistant`.
name:
type: string
description: An optional name for the participant. Provides the model information to differentiate between participants of the same role.
tool_calls:
$ref: "#/components/schemas/ChatCompletionMessageToolCalls"
function_call:
type: object
deprecated: true
description: "Deprecated and replaced by `tool_calls`. The name and arguments of a function that should be called, as generated by the model."
properties:
arguments:
type: string
description: The arguments to call the function with, as generated by the model in JSON format. Note that the model does not always generate valid JSON, and may hallucinate parameters not defined by your function schema. Validate the arguments in your code before calling your function.
name:
type: string
description: The name of the function to call.
required:
- arguments
- name
required:
- role
ChatCompletionRequestToolMessage:
type: object
title: Tool message
properties:
role:
type: string
enum: ["tool"]
description: The role of the messages author, in this case `tool`.
content:
type: string
description: The contents of the tool message.
tool_call_id:
type: string
description: Tool call that this message is responding to.
required:
- role
- content
- tool_call_id
ChatCompletionRequestFunctionMessage:
type: object
title: Function message
deprecated: true
properties:
role:
type: string
enum: ["function"]
description: The role of the messages author, in this case `function`.
content:
nullable: true
type: string
description: The contents of the function message.
name:
type: string
description: The name of the function to call.
required:
- role
- content
- name
FunctionParameters:
type: object
description: "The parameters the functions accepts, described as a JSON Schema object. See the [guide](/docs/guides/text-generation/function-calling) for examples, and the [JSON Schema reference](https://json-schema.org/understanding-json-schema/) for documentation about the format. \n\nOmitting `parameters` defines a function with an empty parameter list."
additionalProperties: true
ChatCompletionFunctions:
type: object
deprecated: true
properties:
description:
type: string
description: A description of what the function does, used by the model to choose when and how to call the function.
name:
type: string
description: The name of the function to be called. Must be a-z, A-Z, 0-9, or contain underscores and dashes, with a maximum length of 64.
parameters:
$ref: "#/components/schemas/FunctionParameters"
required:
- name
ChatCompletionFunctionCallOption:
type: object
description: >
Specifying a particular function via `{"name": "my_function"}` forces the model to call that function.
properties:
name:
type: string
description: The name of the function to call.
required:
- name
ChatCompletionTool:
type: object
properties:
type:
type: string
enum: ["function"]
description: The type of the tool. Currently, only `function` is supported.
function:
$ref: "#/components/schemas/FunctionObject"
required:
- type
- function
FunctionObject:
type: object
properties:
description:
type: string
description: A description of what the function does, used by the model to choose when and how to call the function.
name:
type: string
description: The name of the function to be called. Must be a-z, A-Z, 0-9, or contain underscores and dashes, with a maximum length of 64.
parameters:
$ref: "#/components/schemas/FunctionParameters"
required:
- name
ChatCompletionToolChoiceOption:
description: |
Controls which (if any) tool is called by the model.
`none` means the model will not call any tool and instead generates a message.
`auto` means the model can pick between generating a message or calling one or more tools.
`required` means the model must call one or more tools.
Specifying a particular tool via `{"type": "function", "function": {"name": "my_function"}}` forces the model to call that tool.
`none` is the default when no tools are present. `auto` is the default if tools are present.
oneOf:
- type: string
description: >
`none` means the model will not call any tool and instead generates a message.
`auto` means the model can pick between generating a message or calling one or more tools.
`required` means the model must call one or more tools.
enum: [none, auto, required]
- $ref: "#/components/schemas/ChatCompletionNamedToolChoice"
x-oaiExpandable: true
ChatCompletionNamedToolChoice:
type: object
description: Specifies a tool the model should use. Use to force the model to call a specific function.
properties:
type:
type: string
enum: ["function"]
description: The type of the tool. Currently, only `function` is supported.
function:
type: object
properties:
name:
type: string
description: The name of the function to call.
required:
- name
required:
- type
- function
ChatCompletionMessageToolCalls:
type: array
description: The tool calls generated by the model, such as function calls.
items:
$ref: "#/components/schemas/ChatCompletionMessageToolCall"
ChatCompletionMessageToolCall:
type: object
properties:
# TODO: index included when streaming
id:
type: string
description: The ID of the tool call.
type:
type: string
enum: ["function"]
description: The type of the tool. Currently, only `function` is supported.
function:
type: object
description: The function that the model called.
properties:
name:
type: string
description: The name of the function to call.
arguments:
type: string
description: The arguments to call the function with, as generated by the model in JSON format. Note that the model does not always generate valid JSON, and may hallucinate parameters not defined by your function schema. Validate the arguments in your code before calling your function.
required:
- name
- arguments
required:
- id
- type
- function
ChatCompletionMessageToolCallChunk:
type: object
properties:
index:
type: integer
id:
type: string
description: The ID of the tool call.
type:
type: string
enum: ["function"]
description: The type of the tool. Currently, only `function` is supported.
function:
type: object
properties:
name:
type: string
description: The name of the function to call.
arguments:
type: string
description: The arguments to call the function with, as generated by the model in JSON format. Note that the model does not always generate valid JSON, and may hallucinate parameters not defined by your function schema. Validate the arguments in your code before calling your function.
required:
- index
# Note, this isn't referenced anywhere, but is kept as a convenience to record all possible roles in one place.
ChatCompletionRole:
type: string
description: The role of the author of a message
enum:
- system
- user
- assistant
- tool
- function
ChatCompletionStreamOptions:
description: |
Options for streaming response. Only set this when you set `stream: true`.
type: object
nullable: true
default: null
properties:
include_usage:
type: boolean
description: |
If set, an additional chunk will be streamed before the `data: [DONE]` message. The `usage` field on this chunk shows the token usage statistics for the entire request, and the `choices` field will always be an empty array. All other chunks will also include a `usage` field, but with a null value.
ChatCompletionResponseMessage:
type: object
description: A chat completion message generated by the model.
properties:
content:
type: string
description: The contents of the message.
nullable: true
tool_calls:
$ref: "#/components/schemas/ChatCompletionMessageToolCalls"
role:
type: string
enum: ["assistant"]
description: The role of the author of this message.
function_call:
type: object
deprecated: true
description: "Deprecated and replaced by `tool_calls`. The name and arguments of a function that should be called, as generated by the model."
properties:
arguments:
type: string
description: The arguments to call the function with, as generated by the model in JSON format. Note that the model does not always generate valid JSON, and may hallucinate parameters not defined by your function schema. Validate the arguments in your code before calling your function.
name:
type: string
description: The name of the function to call.
required:
- name
- arguments
required:
- role
- content
ChatCompletionStreamResponseDelta:
type: object
description: A chat completion delta generated by streamed model responses.
properties:
content:
type: string
description: The contents of the chunk message.
nullable: true
function_call:
deprecated: true
type: object
description: "Deprecated and replaced by `tool_calls`. The name and arguments of a function that should be called, as generated by the model."
properties:
arguments:
type: string
description: The arguments to call the function with, as generated by the model in JSON format. Note that the model does not always generate valid JSON, and may hallucinate parameters not defined by your function schema. Validate the arguments in your code before calling your function.
name:
type: string
description: The name of the function to call.
tool_calls:
type: array
items:
$ref: "#/components/schemas/ChatCompletionMessageToolCallChunk"
role:
type: string
enum: ["system", "user", "assistant", "tool"]
description: The role of the author of this message.
CreateChatCompletionRequest:
type: object
properties:
messages:
description: A list of messages comprising the conversation so far. [Example Python code](https://cookbook.openai.com/examples/how_to_format_inputs_to_chatgpt_models).
type: array
minItems: 1
items:
$ref: "#/components/schemas/ChatCompletionRequestMessage"
model:
description: ID of the model to use. See the [model endpoint compatibility](/docs/models/model-endpoint-compatibility) table for details on which models work with the Chat API.
example: "gpt-4-turbo"
anyOf:
- type: string
- type: string
enum:
[
"gpt-4-turbo",
"gpt-4-turbo-2024-04-09",
"gpt-4-0125-preview",
"gpt-4-turbo-preview",
"gpt-4-1106-preview",
"gpt-4-vision-preview",
"gpt-4",
"gpt-4-0314",
"gpt-4-0613",
"gpt-4-32k",
"gpt-4-32k-0314",
"gpt-4-32k-0613",
"gpt-3.5-turbo",
"gpt-3.5-turbo-16k",
"gpt-3.5-turbo-0301",
"gpt-3.5-turbo-0613",
"gpt-3.5-turbo-1106",
"gpt-3.5-turbo-0125",
"gpt-3.5-turbo-16k-0613",
]
x-oaiTypeLabel: string
frequency_penalty:
type: number
default: 0
minimum: -2
maximum: 2
nullable: true
description: *completions_frequency_penalty_description
logit_bias:
type: object
x-oaiTypeLabel: map
default: null
nullable: true
additionalProperties:
type: integer
description: |
Modify the likelihood of specified tokens appearing in the completion.
Accepts a JSON object that maps tokens (specified by their token ID in the tokenizer) to an associated bias value from -100 to 100. Mathematically, the bias is added to the logits generated by the model prior to sampling. The exact effect will vary per model, but values between -1 and 1 should decrease or increase likelihood of selection; values like -100 or 100 should result in a ban or exclusive selection of the relevant token.
logprobs:
description: Whether to return log probabilities of the output tokens or not. If true, returns the log probabilities of each output token returned in the `content` of `message`.
type: boolean
default: false
nullable: true
top_logprobs:
description: An integer between 0 and 20 specifying the number of most likely tokens to return at each token position, each with an associated log probability. `logprobs` must be set to `true` if this parameter is used.
type: integer
minimum: 0
maximum: 20
nullable: true
max_tokens:
description: |
The maximum number of [tokens](/tokenizer) that can be generated in the chat completion.
The total length of input tokens and generated tokens is limited by the model's context length. [Example Python code](https://cookbook.openai.com/examples/how_to_count_tokens_with_tiktoken) for counting tokens.
type: integer
nullable: true
n:
type: integer
minimum: 1
maximum: 128
default: 1
example: 1
nullable: true
description: How many chat completion choices to generate for each input message. Note that you will be charged based on the number of generated tokens across all of the choices. Keep `n` as `1` to minimize costs.
presence_penalty:
type: number
default: 0
minimum: -2
maximum: 2
nullable: true
description: *completions_presence_penalty_description
response_format:
type: object
description: |
An object specifying the format that the model must output. Compatible with [GPT-4 Turbo](/docs/models/gpt-4-and-gpt-4-turbo) and all GPT-3.5 Turbo models newer than `gpt-3.5-turbo-1106`.
Setting to `{ "type": "json_object" }` enables JSON mode, which guarantees the message the model generates is valid JSON.
**Important:** when using JSON mode, you **must** also instruct the model to produce JSON yourself via a system or user message. Without this, the model may generate an unending stream of whitespace until the generation reaches the token limit, resulting in a long-running and seemingly "stuck" request. Also note that the message content may be partially cut off if `finish_reason="length"`, which indicates the generation exceeded `max_tokens` or the conversation exceeded the max context length.
properties:
type:
type: string
enum: ["text", "json_object"]
example: "json_object"
default: "text"
description: Must be one of `text` or `json_object`.
seed:
type: integer
minimum: -9223372036854775808
maximum: 9223372036854775807
nullable: true
description: |
This feature is in Beta.
If specified, our system will make a best effort to sample deterministically, such that repeated requests with the same `seed` and parameters should return the same result.
Determinism is not guaranteed, and you should refer to the `system_fingerprint` response parameter to monitor changes in the backend.
x-oaiMeta:
beta: true
stop:
description: |
Up to 4 sequences where the API will stop generating further tokens.
default: null
oneOf:
- type: string
nullable: true
- type: array
minItems: 1
maxItems: 4
items:
type: string
stream:
description: >
If set, partial message deltas will be sent, like in ChatGPT. Tokens will be sent as data-only [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format)
as they become available, with the stream terminated by a `data: [DONE]` message. [Example Python code](https://cookbook.openai.com/examples/how_to_stream_completions).
type: boolean
nullable: true
default: false
stream_options:
$ref: "#/components/schemas/ChatCompletionStreamOptions"
temperature:
type: number
minimum: 0
maximum: 2
default: 1
example: 1
nullable: true
description: *completions_temperature_description
top_p:
type: number
minimum: 0
maximum: 1
default: 1
example: 1
nullable: true
description: *completions_top_p_description
tools:
type: array
description: >
A list of tools the model may call. Currently, only functions are supported as a tool.
Use this to provide a list of functions the model may generate JSON inputs for. A max of 128 functions are supported.
items:
$ref: "#/components/schemas/ChatCompletionTool"
tool_choice:
$ref: "#/components/schemas/ChatCompletionToolChoiceOption"
user: *end_user_param_configuration
function_call:
deprecated: true
description: |
Deprecated in favor of `tool_choice`.
Controls which (if any) function is called by the model.
`none` means the model will not call a function and instead generates a message.
`auto` means the model can pick between generating a message or calling a function.
Specifying a particular function via `{"name": "my_function"}` forces the model to call that function.
`none` is the default when no functions are present. `auto` is the default if functions are present.
oneOf:
- type: string
description: >
`none` means the model will not call a function and instead generates a message.
`auto` means the model can pick between generating a message or calling a function.
enum: [none, auto]
- $ref: "#/components/schemas/ChatCompletionFunctionCallOption"
x-oaiExpandable: true
functions:
deprecated: true
description: |
Deprecated in favor of `tools`.
A list of functions the model may generate JSON inputs for.
type: array
minItems: 1
maxItems: 128
items:
$ref: "#/components/schemas/ChatCompletionFunctions"
required:
- model
- messages
CreateChatCompletionResponse:
type: object
description: Represents a chat completion response returned by model, based on the provided input.
properties:
id:
type: string
description: A unique identifier for the chat completion.
choices:
type: array
description: A list of chat completion choices. Can be more than one if `n` is greater than 1.
items:
type: object
required:
- finish_reason
- index
- message
- logprobs
properties:
finish_reason:
type: string
description: &chat_completion_finish_reason_description |
The reason the model stopped generating tokens. This will be `stop` if the model hit a natural stop point or a provided stop sequence,
`length` if the maximum number of tokens specified in the request was reached,
`content_filter` if content was omitted due to a flag from our content filters,
`tool_calls` if the model called a tool, or `function_call` (deprecated) if the model called a function.
enum:
[
"stop",
"length",
"tool_calls",
"content_filter",
"function_call",
]
index:
type: integer
description: The index of the choice in the list of choices.
message:
$ref: "#/components/schemas/ChatCompletionResponseMessage"
logprobs: &chat_completion_response_logprobs
description: Log probability information for the choice.
type: object
nullable: true
properties:
content:
description: A list of message content tokens with log probability information.
type: array
items:
$ref: "#/components/schemas/ChatCompletionTokenLogprob"
nullable: true
required:
- content
created:
type: integer
description: The Unix timestamp (in seconds) of when the chat completion was created.
model:
type: string
description: The model used for the chat completion.
system_fingerprint:
type: string
description: |
This fingerprint represents the backend configuration that the model runs with.
Can be used in conjunction with the `seed` request parameter to understand when backend changes have been made that might impact determinism.
object:
type: string
description: The object type, which is always `chat.completion`.
enum: [chat.completion]
usage:
$ref: "#/components/schemas/CompletionUsage"
required:
- choices
- created
- id
- model
- object
x-oaiMeta:
name: The chat completion object
group: chat
example: *chat_completion_example
CreateChatCompletionFunctionResponse:
type: object
description: Represents a chat completion response returned by model, based on the provided input.
properties:
id:
type: string
description: A unique identifier for the chat completion.
choices:
type: array
description: A list of chat completion choices. Can be more than one if `n` is greater than 1.
items:
type: object
required:
- finish_reason
- index
- message
- logprobs
properties:
finish_reason:
type: string
description:
&chat_completion_function_finish_reason_description |
The reason the model stopped generating tokens. This will be `stop` if the model hit a natural stop point or a provided stop sequence, `length` if the maximum number of tokens specified in the request was reached, `content_filter` if content was omitted due to a flag from our content filters, or `function_call` if the model called a function.
enum: ["stop", "length", "function_call", "content_filter"]
index:
type: integer
description: The index of the choice in the list of choices.
message:
$ref: "#/components/schemas/ChatCompletionResponseMessage"
created:
type: integer
description: The Unix timestamp (in seconds) of when the chat completion was created.
model:
type: string
description: The model used for the chat completion.
system_fingerprint:
type: string
description: |
This fingerprint represents the backend configuration that the model runs with.
Can be used in conjunction with the `seed` request parameter to understand when backend changes have been made that might impact determinism.
object:
type: string
description: The object type, which is always `chat.completion`.
enum: [chat.completion]
usage:
$ref: "#/components/schemas/CompletionUsage"
required:
- choices
- created
- id
- model
- object
x-oaiMeta:
name: The chat completion object
group: chat
example: *chat_completion_function_example
ChatCompletionTokenLogprob:
type: object
properties:
token: &chat_completion_response_logprobs_token
description: The token.
type: string
logprob: &chat_completion_response_logprobs_token_logprob
description: The log probability of this token, if it is within the top 20 most likely tokens. Otherwise, the value `-9999.0` is used to signify that the token is very unlikely.
type: number
bytes: &chat_completion_response_logprobs_bytes
description: A list of integers representing the UTF-8 bytes representation of the token. Useful in instances where characters are represented by multiple tokens and their byte representations must be combined to generate the correct text representation. Can be `null` if there is no bytes representation for the token.
type: array
items:
type: integer
nullable: true
top_logprobs:
description: List of the most likely tokens and their log probability, at this token position. In rare cases, there may be fewer than the number of requested `top_logprobs` returned.
type: array
items:
type: object
properties:
token: *chat_completion_response_logprobs_token
logprob: *chat_completion_response_logprobs_token_logprob
bytes: *chat_completion_response_logprobs_bytes
required:
- token
- logprob
- bytes
required:
- token
- logprob
- bytes
- top_logprobs
ListPaginatedFineTuningJobsResponse:
type: object
properties:
data:
type: array
items:
$ref: "#/components/schemas/FineTuningJob"
has_more:
type: boolean
object:
type: string
enum: [list]
required:
- object
- data
- has_more
CreateChatCompletionStreamResponse:
type: object
description: Represents a streamed chunk of a chat completion response returned by model, based on the provided input.
properties:
id:
type: string
description: A unique identifier for the chat completion. Each chunk has the same ID.
choices:
type: array
description: |
A list of chat completion choices. Can contain more than one elements if `n` is greater than 1. Can also be empty for the
last chunk if you set `stream_options: {"include_usage": true}`.
items:
type: object
required:
- delta
- finish_reason
- index
properties:
delta:
$ref: "#/components/schemas/ChatCompletionStreamResponseDelta"
logprobs: *chat_completion_response_logprobs
finish_reason:
type: string
description: *chat_completion_finish_reason_description
enum:
[
"stop",
"length",
"tool_calls",
"content_filter",
"function_call",
]
nullable: true
index:
type: integer
description: The index of the choice in the list of choices.
created:
type: integer
description: The Unix timestamp (in seconds) of when the chat completion was created. Each chunk has the same timestamp.
model:
type: string
description: The model to generate the completion.
system_fingerprint:
type: string
description: |
This fingerprint represents the backend configuration that the model runs with.
Can be used in conjunction with the `seed` request parameter to understand when backend changes have been made that might impact determinism.
object:
type: string
description: The object type, which is always `chat.completion.chunk`.
enum: [chat.completion.chunk]
usage:
type: object
description: |
An optional field that will only be present when you set `stream_options: {"include_usage": true}` in your request.
When present, it contains a null value except for the last chunk which contains the token usage statistics for the entire request.
properties:
completion_tokens:
type: integer
description: Number of tokens in the generated completion.
prompt_tokens:
type: integer
description: Number of tokens in the prompt.
total_tokens:
type: integer
description: Total number of tokens used in the request (prompt + completion).
required:
- prompt_tokens
- completion_tokens
- total_tokens
required:
- choices
- created
- id
- model
- object
x-oaiMeta:
name: The chat completion chunk object
group: chat
example: *chat_completion_chunk_example
CreateChatCompletionImageResponse:
type: object
description: Represents a streamed chunk of a chat completion response returned by model, based on the provided input.
x-oaiMeta:
name: The chat completion chunk object
group: chat
example: *chat_completion_image_example
CreateImageRequest:
type: object
properties:
prompt:
description: A text description of the desired image(s). The maximum length is 1000 characters for `dall-e-2` and 4000 characters for `dall-e-3`.
type: string
example: "A cute baby sea otter"
model:
anyOf:
- type: string
- type: string
enum: ["dall-e-2", "dall-e-3"]
x-oaiTypeLabel: string
default: "dall-e-2"
example: "dall-e-3"
nullable: true
description: The model to use for image generation.
n: &images_n
type: integer
minimum: 1
maximum: 10
default: 1
example: 1
nullable: true
description: The number of images to generate. Must be between 1 and 10. For `dall-e-3`, only `n=1` is supported.
quality:
type: string
enum: ["standard", "hd"]
default: "standard"
example: "standard"
description: The quality of the image that will be generated. `hd` creates images with finer details and greater consistency across the image. This param is only supported for `dall-e-3`.
response_format: &images_response_format
type: string
enum: ["url", "b64_json"]
default: "url"
example: "url"
nullable: true
description: The format in which the generated images are returned. Must be one of `url` or `b64_json`. URLs are only valid for 60 minutes after the image has been generated.
size: &images_size
type: string
enum: ["256x256", "512x512", "1024x1024", "1792x1024", "1024x1792"]
default: "1024x1024"
example: "1024x1024"
nullable: true
description: The size of the generated images. Must be one of `256x256`, `512x512`, or `1024x1024` for `dall-e-2`. Must be one of `1024x1024`, `1792x1024`, or `1024x1792` for `dall-e-3` models.
style:
type: string
enum: ["vivid", "natural"]
default: "vivid"
example: "vivid"
nullable: true
description: The style of the generated images. Must be one of `vivid` or `natural`. Vivid causes the model to lean towards generating hyper-real and dramatic images. Natural causes the model to produce more natural, less hyper-real looking images. This param is only supported for `dall-e-3`.
user: *end_user_param_configuration
required:
- prompt
ImagesResponse:
properties:
created:
type: integer
data:
type: array
items:
$ref: "#/components/schemas/Image"
required:
- created
- data
Image:
type: object
description: Represents the url or the content of an image generated by the OpenAI API.
properties:
b64_json:
type: string
description: The base64-encoded JSON of the generated image, if `response_format` is `b64_json`.
url:
type: string
description: The URL of the generated image, if `response_format` is `url` (default).
revised_prompt:
type: string
description: The prompt that was used to generate the image, if there was any revision to the prompt.
x-oaiMeta:
name: The image object
example: |
{
"url": "...",
"revised_prompt": "..."
}
CreateImageEditRequest:
type: object
properties:
image:
description: The image to edit. Must be a valid PNG file, less than 4MB, and square. If mask is not provided, image must have transparency, which will be used as the mask.
type: string
format: binary
prompt:
description: A text description of the desired image(s). The maximum length is 1000 characters.
type: string
example: "A cute baby sea otter wearing a beret"
mask:
description: An additional image whose fully transparent areas (e.g. where alpha is zero) indicate where `image` should be edited. Must be a valid PNG file, less than 4MB, and have the same dimensions as `image`.
type: string
format: binary
model:
anyOf:
- type: string
- type: string
enum: ["dall-e-2"]
x-oaiTypeLabel: string
default: "dall-e-2"
example: "dall-e-2"
nullable: true
description: The model to use for image generation. Only `dall-e-2` is supported at this time.
n:
type: integer
minimum: 1
maximum: 10
default: 1
example: 1
nullable: true
description: The number of images to generate. Must be between 1 and 10.
size: &dalle2_images_size
type: string
enum: ["256x256", "512x512", "1024x1024"]
default: "1024x1024"
example: "1024x1024"
nullable: true
description: The size of the generated images. Must be one of `256x256`, `512x512`, or `1024x1024`.
response_format: *images_response_format
user: *end_user_param_configuration
required:
- prompt
- image
CreateImageVariationRequest:
type: object
properties:
image:
description: The image to use as the basis for the variation(s). Must be a valid PNG file, less than 4MB, and square.
type: string
format: binary
model:
anyOf:
- type: string
- type: string
enum: ["dall-e-2"]
x-oaiTypeLabel: string
default: "dall-e-2"
example: "dall-e-2"
nullable: true
description: The model to use for image generation. Only `dall-e-2` is supported at this time.
n: *images_n
response_format: *images_response_format
size: *dalle2_images_size
user: *end_user_param_configuration
required:
- image
CreateModerationRequest:
type: object
properties:
input:
description: The input text to classify
oneOf:
- type: string
default: ""
example: "I want to kill them."
- type: array
items:
type: string
default: ""
example: "I want to kill them."
model:
description: |
Two content moderations models are available: `text-moderation-stable` and `text-moderation-latest`.
The default is `text-moderation-latest` which will be automatically upgraded over time. This ensures you are always using our most accurate model. If you use `text-moderation-stable`, we will provide advanced notice before updating the model. Accuracy of `text-moderation-stable` may be slightly lower than for `text-moderation-latest`.
nullable: false
default: "text-moderation-latest"
example: "text-moderation-stable"
anyOf:
- type: string
- type: string
enum: ["text-moderation-latest", "text-moderation-stable"]
x-oaiTypeLabel: string
required:
- input
CreateModerationResponse:
type: object
description: Represents if a given text input is potentially harmful.
properties:
id:
type: string
description: The unique identifier for the moderation request.
model:
type: string
description: The model used to generate the moderation results.
results:
type: array
description: A list of moderation objects.
items:
type: object
properties:
flagged:
type: boolean
description: Whether any of the below categories are flagged.
categories:
type: object
description: A list of the categories, and whether they are flagged or not.
properties:
hate:
type: boolean
description: Content that expresses, incites, or promotes hate based on race, gender, ethnicity, religion, nationality, sexual orientation, disability status, or caste. Hateful content aimed at non-protected groups (e.g., chess players) is harassment.
hate/threatening:
type: boolean
description: Hateful content that also includes violence or serious harm towards the targeted group based on race, gender, ethnicity, religion, nationality, sexual orientation, disability status, or caste.
harassment:
type: boolean
description: Content that expresses, incites, or promotes harassing language towards any target.
harassment/threatening:
type: boolean
description: Harassment content that also includes violence or serious harm towards any target.
self-harm:
type: boolean
description: Content that promotes, encourages, or depicts acts of self-harm, such as suicide, cutting, and eating disorders.
self-harm/intent:
type: boolean
description: Content where the speaker expresses that they are engaging or intend to engage in acts of self-harm, such as suicide, cutting, and eating disorders.
self-harm/instructions:
type: boolean
description: Content that encourages performing acts of self-harm, such as suicide, cutting, and eating disorders, or that gives instructions or advice on how to commit such acts.
sexual:
type: boolean
description: Content meant to arouse sexual excitement, such as the description of sexual activity, or that promotes sexual services (excluding sex education and wellness).
sexual/minors:
type: boolean
description: Sexual content that includes an individual who is under 18 years old.
violence:
type: boolean
description: Content that depicts death, violence, or physical injury.
violence/graphic:
type: boolean
description: Content that depicts death, violence, or physical injury in graphic detail.
required:
- hate
- hate/threatening
- harassment
- harassment/threatening
- self-harm
- self-harm/intent
- self-harm/instructions
- sexual
- sexual/minors
- violence
- violence/graphic
category_scores:
type: object
description: A list of the categories along with their scores as predicted by model.
properties:
hate:
type: number
description: The score for the category 'hate'.
hate/threatening:
type: number
description: The score for the category 'hate/threatening'.
harassment:
type: number
description: The score for the category 'harassment'.
harassment/threatening:
type: number
description: The score for the category 'harassment/threatening'.
self-harm:
type: number
description: The score for the category 'self-harm'.
self-harm/intent:
type: number
description: The score for the category 'self-harm/intent'.
self-harm/instructions:
type: number
description: The score for the category 'self-harm/instructions'.
sexual:
type: number
description: The score for the category 'sexual'.
sexual/minors:
type: number
description: The score for the category 'sexual/minors'.
violence:
type: number
description: The score for the category 'violence'.
violence/graphic:
type: number
description: The score for the category 'violence/graphic'.
required:
- hate
- hate/threatening
- harassment
- harassment/threatening
- self-harm
- self-harm/intent
- self-harm/instructions
- sexual
- sexual/minors
- violence
- violence/graphic
required:
- flagged
- categories
- category_scores
required:
- id
- model
- results
x-oaiMeta:
name: The moderation object
example: *moderation_example
ListFilesResponse:
type: object
properties:
data:
type: array
items:
$ref: "#/components/schemas/OpenAIFile"
object:
type: string
enum: [list]
required:
- object
- data
CreateFileRequest:
type: object
additionalProperties: false
properties:
file:
description: |
The File object (not file name) to be uploaded.
type: string
format: binary
purpose:
description: |
The intended purpose of the uploaded file.
Use "fine-tune" for [Fine-tuning](/docs/api-reference/fine-tuning) and "assistants" for [Assistants](/docs/api-reference/assistants) and [Messages](/docs/api-reference/messages). This allows us to validate the format of the uploaded file is correct for fine-tuning.
type: string
enum: ["fine-tune", "assistants"]
required:
- file
- purpose
DeleteFileResponse:
type: object
properties:
id:
type: string
object:
type: string
enum: [file]
deleted:
type: boolean
required:
- id
- object
- deleted
CreateFineTuningJobRequest:
type: object
properties:
model:
description: |
The name of the model to fine-tune. You can select one of the
[supported models](/docs/guides/fine-tuning/what-models-can-be-fine-tuned).
example: "gpt-3.5-turbo"
anyOf:
- type: string
- type: string
enum: ["babbage-002", "davinci-002", "gpt-3.5-turbo"]
x-oaiTypeLabel: string
training_file:
description: |
The ID of an uploaded file that contains training data.
See [upload file](/docs/api-reference/files/create) for how to upload a file.
Your dataset must be formatted as a JSONL file. Additionally, you must upload your file with the purpose `fine-tune`.
See the [fine-tuning guide](/docs/guides/fine-tuning) for more details.
type: string
example: "file-abc123"
hyperparameters:
type: object
description: The hyperparameters used for the fine-tuning job.
properties:
batch_size:
description: |
Number of examples in each batch. A larger batch size means that model parameters
are updated less frequently, but with lower variance.
oneOf:
- type: string
enum: [auto]
- type: integer
minimum: 1
maximum: 256
default: auto
learning_rate_multiplier:
description: |
Scaling factor for the learning rate. A smaller learning rate may be useful to avoid
overfitting.
oneOf:
- type: string
enum: [auto]
- type: number
minimum: 0
exclusiveMinimum: true
default: auto
n_epochs:
description: |
The number of epochs to train the model for. An epoch refers to one full cycle
through the training dataset.
oneOf:
- type: string
enum: [auto]
- type: integer
minimum: 1
maximum: 50
default: auto
suffix:
description: |
A string of up to 18 characters that will be added to your fine-tuned model name.
For example, a `suffix` of "custom-model-name" would produce a model name like `ft:gpt-3.5-turbo:openai:custom-model-name:7p4lURel`.
type: string
minLength: 1
maxLength: 40
default: null
nullable: true
validation_file:
description: |
The ID of an uploaded file that contains validation data.
If you provide this file, the data is used to generate validation
metrics periodically during fine-tuning. These metrics can be viewed in
the fine-tuning results file.
The same data should not be present in both train and validation files.
Your dataset must be formatted as a JSONL file. You must upload your file with the purpose `fine-tune`.
See the [fine-tuning guide](/docs/guides/fine-tuning) for more details.
type: string
nullable: true
example: "file-abc123"
integrations:
type: array
description: A list of integrations to enable for your fine-tuning job.
nullable: true
items:
type: object
required:
- type
- wandb
properties:
type:
description: |
The type of integration to enable. Currently, only "wandb" (Weights and Biases) is supported.
oneOf:
- type: string
enum: [wandb]
wandb:
type: object
description: |
The settings for your integration with Weights and Biases. This payload specifies the project that
metrics will be sent to. Optionally, you can set an explicit display name for your run, add tags
to your run, and set a default entity (team, username, etc) to be associated with your run.
required:
- project
properties:
project:
description: |
The name of the project that the new run will be created under.
type: string
example: "my-wandb-project"
name:
description: |
A display name to set for the run. If not set, we will use the Job ID as the name.
nullable: true
type: string
entity:
description: |
The entity to use for the run. This allows you to set the team or username of the WandB user that you would
like associated with the run. If not set, the default entity for the registered WandB API key is used.
nullable: true
type: string
tags:
description: |
A list of tags to be attached to the newly created run. These tags are passed through directly to WandB. Some
default tags are generated by OpenAI: "openai/finetune", "openai/{base-model}", "openai/{ftjob-abcdef}".
type: array
items:
type: string
example: "custom-tag"
seed:
description: |
The seed controls the reproducibility of the job. Passing in the same seed and job parameters should produce the same results, but may differ in rare cases.
If a seed is not specified, one will be generated for you.
type: integer
nullable: true
minimum: 0
maximum: 2147483647
example: 42
required:
- model
- training_file
ListFineTuningJobEventsResponse:
type: object
properties:
data:
type: array
items:
$ref: "#/components/schemas/FineTuningJobEvent"
object:
type: string
enum: [list]
required:
- object
- data
ListFineTuningJobCheckpointsResponse:
type: object
properties:
data:
type: array
items:
$ref: "#/components/schemas/FineTuningJobCheckpoint"
object:
type: string
enum: [list]
first_id:
type: string
nullable: true
last_id:
type: string
nullable: true
has_more:
type: boolean
required:
- object
- data
- has_more
CreateEmbeddingRequest:
type: object
additionalProperties: false
properties:
input:
description: |
Input text to embed, encoded as a string or array of tokens. To embed multiple inputs in a single request, pass an array of strings or array of token arrays. The input must not exceed the max input tokens for the model (8192 tokens for `text-embedding-ada-002`), cannot be an empty string, and any array must be 2048 dimensions or less. [Example Python code](https://cookbook.openai.com/examples/how_to_count_tokens_with_tiktoken) for counting tokens.
example: "The quick brown fox jumped over the lazy dog"
oneOf:
- type: string
title: string
description: The string that will be turned into an embedding.
default: ""
example: "This is a test."
- type: array
title: array
description: The array of strings that will be turned into an embedding.
minItems: 1
maxItems: 2048
items:
type: string
default: ""
example: "['This is a test.']"
- type: array
title: array
description: The array of integers that will be turned into an embedding.
minItems: 1
maxItems: 2048
items:
type: integer
example: "[1212, 318, 257, 1332, 13]"
- type: array
title: array
description: The array of arrays containing integers that will be turned into an embedding.
minItems: 1
maxItems: 2048
items:
type: array
minItems: 1
items:
type: integer
example: "[[1212, 318, 257, 1332, 13]]"
x-oaiExpandable: true
model:
description: *model_description
example: "text-embedding-3-small"
anyOf:
- type: string
- type: string
enum:
[
"text-embedding-ada-002",
"text-embedding-3-small",
"text-embedding-3-large",
]
x-oaiTypeLabel: string
encoding_format:
description: "The format to return the embeddings in. Can be either `float` or [`base64`](https://pypi.org/project/pybase64/)."
example: "float"
default: "float"
type: string
enum: ["float", "base64"]
dimensions:
description: |
The number of dimensions the resulting output embeddings should have. Only supported in `text-embedding-3` and later models.
type: integer
minimum: 1
user: *end_user_param_configuration
required:
- model
- input
CreateEmbeddingResponse:
type: object
properties:
data:
type: array
description: The list of embeddings generated by the model.
items:
$ref: "#/components/schemas/Embedding"
model:
type: string
description: The name of the model used to generate the embedding.
object:
type: string
description: The object type, which is always "list".
enum: [list]
usage:
type: object
description: The usage information for the request.
properties:
prompt_tokens:
type: integer
description: The number of tokens used by the prompt.
total_tokens:
type: integer
description: The total number of tokens used by the request.
required:
- prompt_tokens
- total_tokens
required:
- object
- model
- data
- usage
CreateTranscriptionRequest:
type: object
additionalProperties: false
properties:
file:
description: |
The audio file object (not file name) to transcribe, in one of these formats: flac, mp3, mp4, mpeg, mpga, m4a, ogg, wav, or webm.
type: string
x-oaiTypeLabel: file
format: binary
model:
description: |
ID of the model to use. Only `whisper-1` (which is powered by our open source Whisper V2 model) is currently available.
example: whisper-1
anyOf:
- type: string
- type: string
enum: ["whisper-1"]
x-oaiTypeLabel: string
language:
description: |
The language of the input audio. Supplying the input language in [ISO-639-1](https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes) format will improve accuracy and latency.
type: string
prompt:
description: |
An optional text to guide the model's style or continue a previous audio segment. The [prompt](/docs/guides/speech-to-text/prompting) should match the audio language.
type: string
response_format:
description: |
The format of the transcript output, in one of these options: `json`, `text`, `srt`, `verbose_json`, or `vtt`.
type: string
enum:
- json
- text
- srt
- verbose_json
- vtt
default: json
temperature:
description: |
The sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use [log probability](https://en.wikipedia.org/wiki/Log_probability) to automatically increase the temperature until certain thresholds are hit.
type: number
default: 0
timestamp_granularities[]:
description: |
The timestamp granularities to populate for this transcription. `response_format` must be set `verbose_json` to use timestamp granularities. Either or both of these options are supported: `word`, or `segment`. Note: There is no additional latency for segment timestamps, but generating word timestamps incurs additional latency.
type: array
items:
type: string
enum:
- word
- segment
default: [segment]
required:
- file
- model
# Note: This does not currently support the non-default response format types.
CreateTranscriptionResponseJson:
type: object
description: Represents a transcription response returned by model, based on the provided input.
properties:
text:
type: string
description: The transcribed text.
required:
- text
x-oaiMeta:
name: The transcription object
group: audio
example: *basic_transcription_response_example
TranscriptionSegment:
type: object
properties:
id:
type: integer
description: Unique identifier of the segment.
seek:
type: integer
description: Seek offset of the segment.
start:
type: number
format: float
description: Start time of the segment in seconds.
end:
type: number
format: float
description: End time of the segment in seconds.
text:
type: string
description: Text content of the segment.
tokens:
type: array
items:
type: integer
description: Array of token IDs for the text content.
temperature:
type: number
format: float
description: Temperature parameter used for generating the segment.
avg_logprob:
type: number
format: float
description: Average logprob of the segment. If the value is lower than -1, consider the logprobs failed.
compression_ratio:
type: number
format: float
description: Compression ratio of the segment. If the value is greater than 2.4, consider the compression failed.
no_speech_prob:
type: number
format: float
description: Probability of no speech in the segment. If the value is higher than 1.0 and the `avg_logprob` is below -1, consider this segment silent.
required:
- id
- seek
- start
- end
- text
- tokens
- temperature
- avg_logprob
- compression_ratio
- no_speech_prob
TranscriptionWord:
type: object
properties:
word:
type: string
description: The text content of the word.
start:
type: number
format: float
description: Start time of the word in seconds.
end:
type: number
format: float
description: End time of the word in seconds.
required: [word, start, end]
CreateTranscriptionResponseVerboseJson:
type: object
description: Represents a verbose json transcription response returned by model, based on the provided input.
properties:
language:
type: string
description: The language of the input audio.
duration:
type: string
description: The duration of the input audio.
text:
type: string
description: The transcribed text.
words:
type: array
description: Extracted words and their corresponding timestamps.
items:
$ref: "#/components/schemas/TranscriptionWord"
segments:
type: array
description: Segments of the transcribed text and their corresponding details.
items:
$ref: "#/components/schemas/TranscriptionSegment"
required: [language, duration, text]
x-oaiMeta:
name: The transcription object
group: audio
example: *verbose_transcription_response_example
CreateTranslationRequest:
type: object
additionalProperties: false
properties:
file:
description: |
The audio file object (not file name) translate, in one of these formats: flac, mp3, mp4, mpeg, mpga, m4a, ogg, wav, or webm.
type: string
x-oaiTypeLabel: file
format: binary
model:
description: |
ID of the model to use. Only `whisper-1` (which is powered by our open source Whisper V2 model) is currently available.
example: whisper-1
anyOf:
- type: string
- type: string
enum: ["whisper-1"]
x-oaiTypeLabel: string
prompt:
description: |
An optional text to guide the model's style or continue a previous audio segment. The [prompt](/docs/guides/speech-to-text/prompting) should be in English.
type: string
response_format:
description: |
The format of the transcript output, in one of these options: `json`, `text`, `srt`, `verbose_json`, or `vtt`.
type: string
default: json
temperature:
description: |
The sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use [log probability](https://en.wikipedia.org/wiki/Log_probability) to automatically increase the temperature until certain thresholds are hit.
type: number
default: 0
required:
- file
- model
# Note: This does not currently support the non-default response format types.
CreateTranslationResponseJson:
type: object
properties:
text:
type: string
required:
- text
CreateTranslationResponseVerboseJson:
type: object
properties:
language:
type: string
description: The language of the output translation (always `english`).
duration:
type: string
description: The duration of the input audio.
text:
type: string
description: The translated text.
segments:
type: array
description: Segments of the translated text and their corresponding details.
items:
$ref: "#/components/schemas/TranscriptionSegment"
required: [language, duration, text]
CreateSpeechRequest:
type: object
additionalProperties: false
properties:
model:
description: |
One of the available [TTS models](/docs/models/tts): `tts-1` or `tts-1-hd`
anyOf:
- type: string
- type: string
enum: ["tts-1", "tts-1-hd"]
x-oaiTypeLabel: string
input:
type: string
description: The text to generate audio for. The maximum length is 4096 characters.
maxLength: 4096
voice:
description: The voice to use when generating the audio. Supported voices are `alloy`, `echo`, `fable`, `onyx`, `nova`, and `shimmer`. Previews of the voices are available in the [Text to speech guide](/docs/guides/text-to-speech/voice-options).
type: string
enum: ["alloy", "echo", "fable", "onyx", "nova", "shimmer"]
response_format:
description: "The format to audio in. Supported formats are `mp3`, `opus`, `aac`, `flac`, `wav`, and `pcm`."
default: "mp3"
type: string
enum: ["mp3", "opus", "aac", "flac", "wav", "pcm"]
speed:
description: "The speed of the generated audio. Select a value from `0.25` to `4.0`. `1.0` is the default."
type: number
default: 1.0
minimum: 0.25
maximum: 4.0
required:
- model
- input
- voice
Model:
title: Model
description: Describes an OpenAI model offering that can be used with the API.
properties:
id:
type: string
description: The model identifier, which can be referenced in the API endpoints.
created:
type: integer
description: The Unix timestamp (in seconds) when the model was created.
object:
type: string
description: The object type, which is always "model".
enum: [model]
owned_by:
type: string
description: The organization that owns the model.
required:
- id
- object
- created
- owned_by
x-oaiMeta:
name: The model object
example: *retrieve_model_response
OpenAIFile:
title: OpenAIFile
description: The `File` object represents a document that has been uploaded to OpenAI.
properties:
id:
type: string
description: The file identifier, which can be referenced in the API endpoints.
bytes:
type: integer
description: The size of the file, in bytes.
created_at:
type: integer
description: The Unix timestamp (in seconds) for when the file was created.
filename:
type: string
description: The name of the file.
object:
type: string
description: The object type, which is always `file`.
enum: ["file"]
purpose:
type: string
description: The intended purpose of the file. Supported values are `fine-tune`, `fine-tune-results`, `assistants`, and `assistants_output`.
enum:
[
"fine-tune",
"fine-tune-results",
"assistants",
"assistants_output",
]
status:
type: string
deprecated: true
description: Deprecated. The current status of the file, which can be either `uploaded`, `processed`, or `error`.
enum: ["uploaded", "processed", "error"]
status_details:
type: string
deprecated: true
description: Deprecated. For details on why a fine-tuning training file failed validation, see the `error` field on `fine_tuning.job`.
required:
- id
- object
- bytes
- created_at
- filename
- purpose
- status
x-oaiMeta:
name: The file object
example: |
{
"id": "file-abc123",
"object": "file",
"bytes": 120000,
"created_at": 1677610602,
"filename": "salesOverview.pdf",
"purpose": "assistants",
}
Embedding:
type: object
description: |
Represents an embedding vector returned by embedding endpoint.
properties:
index:
type: integer
description: The index of the embedding in the list of embeddings.
embedding:
type: array
description: |
The embedding vector, which is a list of floats. The length of vector depends on the model as listed in the [embedding guide](/docs/guides/embeddings).
items:
type: number
object:
type: string
description: The object type, which is always "embedding".
enum: [embedding]
required:
- index
- object
- embedding
x-oaiMeta:
name: The embedding object
example: |
{
"object": "embedding",
"embedding": [
0.0023064255,
-0.009327292,
.... (1536 floats total for ada-002)
-0.0028842222,
],
"index": 0
}
FineTuningJob:
type: object
title: FineTuningJob
description: |
The `fine_tuning.job` object represents a fine-tuning job that has been created through the API.
properties:
id:
type: string
description: The object identifier, which can be referenced in the API endpoints.
created_at:
type: integer
description: The Unix timestamp (in seconds) for when the fine-tuning job was created.
error:
type: object
nullable: true
description: For fine-tuning jobs that have `failed`, this will contain more information on the cause of the failure.
properties:
code:
type: string
description: A machine-readable error code.
message:
type: string
description: A human-readable error message.
param:
type: string
description: The parameter that was invalid, usually `training_file` or `validation_file`. This field will be null if the failure was not parameter-specific.
nullable: true
required:
- code
- message
- param
fine_tuned_model:
type: string
nullable: true
description: The name of the fine-tuned model that is being created. The value will be null if the fine-tuning job is still running.
finished_at:
type: integer
nullable: true
description: The Unix timestamp (in seconds) for when the fine-tuning job was finished. The value will be null if the fine-tuning job is still running.
hyperparameters:
type: object
description: The hyperparameters used for the fine-tuning job. See the [fine-tuning guide](/docs/guides/fine-tuning) for more details.
properties:
n_epochs:
oneOf:
- type: string
enum: [auto]
- type: integer
minimum: 1
maximum: 50
default: auto
description:
The number of epochs to train the model for. An epoch refers to one full cycle through the training dataset.
"auto" decides the optimal number of epochs based on the size of the dataset. If setting the number manually, we support any number between 1 and 50 epochs.
required:
- n_epochs
model:
type: string
description: The base model that is being fine-tuned.
object:
type: string
description: The object type, which is always "fine_tuning.job".
enum: [fine_tuning.job]
organization_id:
type: string
description: The organization that owns the fine-tuning job.
result_files:
type: array
description: The compiled results file ID(s) for the fine-tuning job. You can retrieve the results with the [Files API](/docs/api-reference/files/retrieve-contents).
items:
type: string
example: file-abc123
status:
type: string
description: The current status of the fine-tuning job, which can be either `validating_files`, `queued`, `running`, `succeeded`, `failed`, or `cancelled`.
enum:
[
"validating_files",
"queued",
"running",
"succeeded",
"failed",
"cancelled",
]
trained_tokens:
type: integer
nullable: true
description: The total number of billable tokens processed by this fine-tuning job. The value will be null if the fine-tuning job is still running.
training_file:
type: string
description: The file ID used for training. You can retrieve the training data with the [Files API](/docs/api-reference/files/retrieve-contents).
validation_file:
type: string
nullable: true
description: The file ID used for validation. You can retrieve the validation results with the [Files API](/docs/api-reference/files/retrieve-contents).
integrations:
type: array
nullable: true
description: A list of integrations to enable for this fine-tuning job.
maxItems: 5
items:
oneOf:
- $ref: "#/components/schemas/FineTuningIntegration"
x-oaiExpandable: true
seed:
type: integer
description: The seed used for the fine-tuning job.
estimated_finish:
type: integer
nullable: true
description: The Unix timestamp (in seconds) for when the fine-tuning job is estimated to finish. The value will be null if the fine-tuning job is not running.
required:
- created_at
- error
- finished_at
- fine_tuned_model
- hyperparameters
- id
- model
- object
- organization_id
- result_files
- status
- trained_tokens
- training_file
- validation_file
- seed
x-oaiMeta:
name: The fine-tuning job object
example: *fine_tuning_example
FineTuningIntegration:
type: object
title: Fine-Tuning Job Integration
required:
- type
- wandb
properties:
type:
type: string
description: "The type of the integration being enabled for the fine-tuning job"
enum: ["wandb"]
wandb:
type: object
description: |
The settings for your integration with Weights and Biases. This payload specifies the project that
metrics will be sent to. Optionally, you can set an explicit display name for your run, add tags
to your run, and set a default entity (team, username, etc) to be associated with your run.
required:
- project
properties:
project:
description: |
The name of the project that the new run will be created under.
type: string
example: "my-wandb-project"
name:
description: |
A display name to set for the run. If not set, we will use the Job ID as the name.
nullable: true
type: string
entity:
description: |
The entity to use for the run. This allows you to set the team or username of the WandB user that you would
like associated with the run. If not set, the default entity for the registered WandB API key is used.
nullable: true
type: string
tags:
description: |
A list of tags to be attached to the newly created run. These tags are passed through directly to WandB. Some
default tags are generated by OpenAI: "openai/finetune", "openai/{base-model}", "openai/{ftjob-abcdef}".
type: array
items:
type: string
example: "custom-tag"
FineTuningJobEvent:
type: object
description: Fine-tuning job event object
properties:
id:
type: string
created_at:
type: integer
level:
type: string
enum: ["info", "warn", "error"]
message:
type: string
object:
type: string
enum: [fine_tuning.job.event]
required:
- id
- object
- created_at
- level
- message
x-oaiMeta:
name: The fine-tuning job event object
example: |
{
"object": "fine_tuning.job.event",
"id": "ftevent-abc123"
"created_at": 1677610602,
"level": "info",
"message": "Created fine-tuning job"
}
FineTuningJobCheckpoint:
type: object
title: FineTuningJobCheckpoint
description: |
The `fine_tuning.job.checkpoint` object represents a model checkpoint for a fine-tuning job that is ready to use.
properties:
id:
type: string
description: The checkpoint identifier, which can be referenced in the API endpoints.
created_at:
type: integer
description: The Unix timestamp (in seconds) for when the checkpoint was created.
fine_tuned_model_checkpoint:
type: string
description: The name of the fine-tuned checkpoint model that is created.
step_number:
type: integer
description: The step number that the checkpoint was created at.
metrics:
type: object
description: Metrics at the step number during the fine-tuning job.
properties:
step:
type: number
train_loss:
type: number
train_mean_token_accuracy:
type: number
valid_loss:
type: number
valid_mean_token_accuracy:
type: number
full_valid_loss:
type: number
full_valid_mean_token_accuracy:
type: number
fine_tuning_job_id:
type: string
description: The name of the fine-tuning job that this checkpoint was created from.
object:
type: string
description: The object type, which is always "fine_tuning.job.checkpoint".
enum: [fine_tuning.job.checkpoint]
required:
- created_at
- fine_tuning_job_id
- fine_tuned_model_checkpoint
- id
- metrics
- object
- step_number
x-oaiMeta:
name: The fine-tuning job checkpoint object
example: |
{
"object": "fine_tuning.job.checkpoint",
"id": "ftckpt_qtZ5Gyk4BLq1SfLFWp3RtO3P",
"created_at": 1712211699,
"fine_tuned_model_checkpoint": "ft:gpt-3.5-turbo-0125:my-org:custom_suffix:9ABel2dg:ckpt-step-88",
"fine_tuning_job_id": "ftjob-fpbNQ3H1GrMehXRf8cO97xTN",
"metrics": {
"step": 88,
"train_loss": 0.478,
"train_mean_token_accuracy": 0.924,
"valid_loss": 10.112,
"valid_mean_token_accuracy": 0.145,
"full_valid_loss": 0.567,
"full_valid_mean_token_accuracy": 0.944
},
"step_number": 88
}
CompletionUsage:
type: object
description: Usage statistics for the completion request.
properties:
completion_tokens:
type: integer
description: Number of tokens in the generated completion.
prompt_tokens:
type: integer
description: Number of tokens in the prompt.
total_tokens:
type: integer
description: Total number of tokens used in the request (prompt + completion).
required:
- prompt_tokens
- completion_tokens
- total_tokens
RunCompletionUsage:
type: object
description: Usage statistics related to the run. This value will be `null` if the run is not in a terminal state (i.e. `in_progress`, `queued`, etc.).
properties:
completion_tokens:
type: integer
description: Number of completion tokens used over the course of the run.
prompt_tokens:
type: integer
description: Number of prompt tokens used over the course of the run.
total_tokens:
type: integer
description: Total number of tokens used (prompt + completion).
required:
- prompt_tokens
- completion_tokens
- total_tokens
nullable: true
RunStepCompletionUsage:
type: object
description: Usage statistics related to the run step. This value will be `null` while the run step's status is `in_progress`.
properties:
completion_tokens:
type: integer
description: Number of completion tokens used over the course of the run step.
prompt_tokens:
type: integer
description: Number of prompt tokens used over the course of the run step.
total_tokens:
type: integer
description: Total number of tokens used (prompt + completion).
required:
- prompt_tokens
- completion_tokens
- total_tokens
nullable: true
AssistantsApiResponseFormatOption:
description: |
Specifies the format that the model must output. Compatible with [GPT-4 Turbo](/docs/models/gpt-4-and-gpt-4-turbo) and all GPT-3.5 Turbo models since `gpt-3.5-turbo-1106`.
Setting to `{ "type": "json_object" }` enables JSON mode, which guarantees the message the model generates is valid JSON.
**Important:** when using JSON mode, you **must** also instruct the model to produce JSON yourself via a system or user message. Without this, the model may generate an unending stream of whitespace until the generation reaches the token limit, resulting in a long-running and seemingly "stuck" request. Also note that the message content may be partially cut off if `finish_reason="length"`, which indicates the generation exceeded `max_tokens` or the conversation exceeded the max context length.
oneOf:
- type: string
description: >
`auto` is the default value
enum: [none, auto]
- $ref: "#/components/schemas/AssistantsApiResponseFormat"
x-oaiExpandable: true
AssistantsApiResponseFormat:
type: object
description: |
An object describing the expected output of the model. If `json_object` only `function` type `tools` are allowed to be passed to the Run. If `text` the model can return text or any value needed.
properties:
type:
type: string
enum: ["text", "json_object"]
example: "json_object"
default: "text"
description: Must be one of `text` or `json_object`.
AssistantObject:
type: object
title: Assistant
description: Represents an `assistant` that can call the model and use tools.
properties:
id:
description: The identifier, which can be referenced in API endpoints.
type: string
object:
description: The object type, which is always `assistant`.
type: string
enum: [assistant]
created_at:
description: The Unix timestamp (in seconds) for when the assistant was created.
type: integer
name:
description: &assistant_name_param_description |
The name of the assistant. The maximum length is 256 characters.
type: string
maxLength: 256
nullable: true
description:
description: &assistant_description_param_description |
The description of the assistant. The maximum length is 512 characters.
type: string
maxLength: 512
nullable: true
model:
description: *model_description
type: string
instructions:
description: &assistant_instructions_param_description |
The system instructions that the assistant uses. The maximum length is 256,000 characters.
type: string
maxLength: 256000
nullable: true
tools:
description: &assistant_tools_param_description |
A list of tool enabled on the assistant. There can be a maximum of 128 tools per assistant. Tools can be of types `code_interpreter`, `file_search`, or `function`.
default: []
type: array
maxItems: 128
items:
oneOf:
- $ref: "#/components/schemas/AssistantToolsCode"
- $ref: "#/components/schemas/AssistantToolsFileSearch"
- $ref: "#/components/schemas/AssistantToolsFunction"
x-oaiExpandable: true
tool_resources:
type: object
description: |
A set of resources that are used by the assistant's tools. The resources are specific to the type of tool. For example, the `code_interpreter` tool requires a list of file IDs, while the `file_search` tool requires a list of vector store IDs.
properties:
code_interpreter:
type: object
properties:
file_ids:
type: array
description: |
A list of [file](/docs/api-reference/files) IDs made available to the `code_interpreter`` tool. There can be a maximum of 20 files associated with the tool.
default: []
maxItems: 20
items:
type: string
file_search:
type: object
properties:
vector_store_ids:
type: array
description: |
The ID of the [vector store](/docs/api-reference/vector-stores/object) attached to this assistant. There can be a maximum of 1 vector store attached to the assistant.
maxItems: 1
items:
type: string
nullable: true
metadata:
description: &metadata_description |
Set of 16 key-value pairs that can be attached to an object. This can be useful for storing additional information about the object in a structured format. Keys can be a maximum of 64 characters long and values can be a maxium of 512 characters long.
type: object
x-oaiTypeLabel: map
nullable: true
temperature:
description: &run_temperature_description |
What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic.
type: number
minimum: 0
maximum: 2
default: 1
example: 1
nullable: true
top_p:
type: number
minimum: 0
maximum: 1
default: 1
example: 1
nullable: true
description: &run_top_p_description |
An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.
We generally recommend altering this or temperature but not both.
response_format:
$ref: "#/components/schemas/AssistantsApiResponseFormatOption"
nullable: true
required:
- id
- object
- created_at
- name
- description
- model
- instructions
- tools
- metadata
x-oaiMeta:
name: The assistant object
beta: true
example: *create_assistants_example
CreateAssistantRequest:
type: object
additionalProperties: false
properties:
model:
description: *model_description
example: "gpt-4-turbo"
anyOf:
- type: string
- type: string
enum:
[
"gpt-4-turbo",
"gpt-4-turbo-2024-04-09",
"gpt-4-0125-preview",
"gpt-4-turbo-preview",
"gpt-4-1106-preview",
"gpt-4-vision-preview",
"gpt-4",
"gpt-4-0314",
"gpt-4-0613",
"gpt-4-32k",
"gpt-4-32k-0314",
"gpt-4-32k-0613",
"gpt-3.5-turbo",
"gpt-3.5-turbo-16k",
"gpt-3.5-turbo-0613",
"gpt-3.5-turbo-1106",
"gpt-3.5-turbo-0125",
"gpt-3.5-turbo-16k-0613",
]
x-oaiTypeLabel: string
name:
description: *assistant_name_param_description
type: string
nullable: true
maxLength: 256
description:
description: *assistant_description_param_description
type: string
nullable: true
maxLength: 512
instructions:
description: *assistant_instructions_param_description
type: string
nullable: true
maxLength: 256000
tools:
description: *assistant_tools_param_description
default: []
type: array
maxItems: 128
items:
oneOf:
- $ref: "#/components/schemas/AssistantToolsCode"
- $ref: "#/components/schemas/AssistantToolsFileSearch"
- $ref: "#/components/schemas/AssistantToolsFunction"
x-oaiExpandable: true
tool_resources:
type: object
description: |
A set of resources that are used by the assistant's tools. The resources are specific to the type of tool. For example, the `code_interpreter` tool requires a list of file IDs, while the `file_search` tool requires a list of vector store IDs.
properties:
code_interpreter:
type: object
properties:
file_ids:
type: array
description: |
A list of [file](/docs/api-reference/files) IDs made available to the `code_interpreter` tool. There can be a maximum of 20 files associated with the tool.
default: []
maxItems: 20
items:
type: string
file_search:
type: object
properties:
vector_store_ids:
type: array
description: |
The [vector store](/docs/api-reference/vector-stores/object) attached to this assistant. There can be a maximum of 1 vector store attached to the assistant.
maxItems: 1
items:
type: string
vector_stores:
type: array
description: |
A helper to create a [vector store](/docs/api-reference/vector-stores/object) with file_ids and attach it to this assistant. There can be a maximum of 1 vector store attached to the assistant.
maxItems: 1
items:
type: object
properties:
file_ids:
type: array
description: |
A list of [file](/docs/api-reference/files) IDs to add to the vector store. There can be a maximum of 10000 files in a vector store.
maxItems: 10000
items:
type: string
metadata:
type: object
description: |
Set of 16 key-value pairs that can be attached to a vector store. This can be useful for storing additional information about the vector store in a structured format. Keys can be a maximum of 64 characters long and values can be a maxium of 512 characters long.
x-oaiTypeLabel: map
oneOf:
- required: [vector_store_ids]
- required: [vector_stores]
nullable: true
metadata:
description: *metadata_description
type: object
x-oaiTypeLabel: map
nullable: true
temperature:
description: &run_temperature_description |
What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic.
type: number
minimum: 0
maximum: 2
default: 1
example: 1
nullable: true
top_p:
type: number
minimum: 0
maximum: 1
default: 1
example: 1
nullable: true
description: &run_top_p_description |
An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.
We generally recommend altering this or temperature but not both.
response_format:
$ref: "#/components/schemas/AssistantsApiResponseFormatOption"
nullable: true
required:
- model
ModifyAssistantRequest:
type: object
additionalProperties: false
properties:
model:
description: *model_description
anyOf:
- type: string
name:
description: *assistant_name_param_description
type: string
nullable: true
maxLength: 256
description:
description: *assistant_description_param_description
type: string
nullable: true
maxLength: 512
instructions:
description: *assistant_instructions_param_description
type: string
nullable: true
maxLength: 256000
tools:
description: *assistant_tools_param_description
default: []
type: array
maxItems: 128
items:
oneOf:
- $ref: "#/components/schemas/AssistantToolsCode"
- $ref: "#/components/schemas/AssistantToolsFileSearch"
- $ref: "#/components/schemas/AssistantToolsFunction"
x-oaiExpandable: true
tool_resources:
type: object
description: |
A set of resources that are used by the assistant's tools. The resources are specific to the type of tool. For example, the `code_interpreter` tool requires a list of file IDs, while the `file_search` tool requires a list of vector store IDs.
properties:
code_interpreter:
type: object
properties:
file_ids:
type: array
description: |
Overrides the list of [file](/docs/api-reference/files) IDs made available to the `code_interpreter` tool. There can be a maximum of 20 files associated with the tool.
default: []
maxItems: 20
items:
type: string
file_search:
type: object
properties:
vector_store_ids:
type: array
description: |
Overrides the [vector store](/docs/api-reference/vector-stores/object) attached to this assistant. There can be a maximum of 1 vector store attached to the assistant.
maxItems: 1
items:
type: string
nullable: true
metadata:
description: *metadata_description
type: object
x-oaiTypeLabel: map
nullable: true
temperature:
description: *run_temperature_description
type: number
minimum: 0
maximum: 2
default: 1
example: 1
nullable: true
top_p:
type: number
minimum: 0
maximum: 1
default: 1
example: 1
nullable: true
description: &run_top_p_description |
An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.
We generally recommend altering this or temperature but not both.
response_format:
$ref: "#/components/schemas/AssistantsApiResponseFormatOption"
nullable: true
DeleteAssistantResponse:
type: object
properties:
id:
type: string
deleted:
type: boolean
object:
type: string
enum: [assistant.deleted]
required:
- id
- object
- deleted
ListAssistantsResponse:
type: object
properties:
object:
type: string
example: "list"
data:
type: array
items:
$ref: "#/components/schemas/AssistantObject"
first_id:
type: string
example: "asst_abc123"
last_id:
type: string
example: "asst_abc456"
has_more:
type: boolean
example: false
required:
- object
- data
- first_id
- last_id
- has_more
x-oaiMeta:
name: List assistants response object
group: chat
example: *list_assistants_example
AssistantToolsCode:
type: object
title: Code interpreter tool
properties:
type:
type: string
description: "The type of tool being defined: `code_interpreter`"
enum: ["code_interpreter"]
required:
- type
AssistantToolsFileSearch:
type: object
title: FileSearch tool
properties:
type:
type: string
description: "The type of tool being defined: `file_search`"
enum: ["file_search"]
required:
- type
AssistantToolsFunction:
type: object
title: Function tool
properties:
type:
type: string
description: "The type of tool being defined: `function`"
enum: ["function"]
function:
$ref: "#/components/schemas/FunctionObject"
required:
- type
- function
TruncationObject:
type: object
title: Thread Truncation Controls
description: Controls for how a thread will be truncated prior to the run. Use this to control the intial context window of the run.
properties:
type:
type: string
description: The truncation strategy to use for the thread. The default is `auto`. If set to `last_messages`, the thread will be truncated to the n most recent messages in the thread. When set to `auto`, messages in the middle of the thread will be dropped to fit the context length of the model, `max_prompt_tokens`.
enum: ["auto", "last_messages"]
last_messages:
type: integer
description: The number of most recent messages from the thread when constructing the context for the run.
minimum: 1
nullable: true
required:
- type
AssistantsApiToolChoiceOption:
description: |
Controls which (if any) tool is called by the model.
`none` means the model will not call any tools and instead generates a message.
`auto` is the default value and means the model can pick between generating a message or calling one or more tools.
`required` means the model must call one or more tools before responding to the user.
Specifying a particular tool like `{"type": "file_search"}` or `{"type": "function", "function": {"name": "my_function"}}` forces the model to call that tool.
oneOf:
- type: string
description: >
`none` means the model will not call any tools and instead generates a message.
`auto` means the model can pick between generating a message or calling one or more tools.
`required` means the model must call one or more tools before responding to the user.
enum: [none, auto, required]
- $ref: "#/components/schemas/AssistantsNamedToolChoice"
x-oaiExpandable: true
AssistantsNamedToolChoice:
type: object
description: Specifies a tool the model should use. Use to force the model to call a specific tool.
properties:
type:
type: string
enum: ["function", "code_interpreter", "file_search"]
description: The type of the tool. If type is `function`, the function name must be set
function:
type: object
properties:
name:
type: string
description: The name of the function to call.
required:
- name
required:
- type
RunObject:
type: object
title: A run on a thread
description: Represents an execution run on a [thread](/docs/api-reference/threads).
properties:
id:
description: The identifier, which can be referenced in API endpoints.
type: string
object:
description: The object type, which is always `thread.run`.
type: string
enum: ["thread.run"]
created_at:
description: The Unix timestamp (in seconds) for when the run was created.
type: integer
thread_id:
description: The ID of the [thread](/docs/api-reference/threads) that was executed on as a part of this run.
type: string
assistant_id:
description: The ID of the [assistant](/docs/api-reference/assistants) used for execution of this run.
type: string
status:
description: The status of the run, which can be either `queued`, `in_progress`, `requires_action`, `cancelling`, `cancelled`, `failed`, `completed`, or `expired`.
type: string
enum:
[
"queued",
"in_progress",
"requires_action",
"cancelling",
"cancelled",
"failed",
"completed",
"expired",
]
required_action:
type: object
description: Details on the action required to continue the run. Will be `null` if no action is required.
nullable: true
properties:
type:
description: For now, this is always `submit_tool_outputs`.
type: string
enum: ["submit_tool_outputs"]
submit_tool_outputs:
type: object
description: Details on the tool outputs needed for this run to continue.
properties:
tool_calls:
type: array
description: A list of the relevant tool calls.
items:
$ref: "#/components/schemas/RunToolCallObject"
required:
- tool_calls
required:
- type
- submit_tool_outputs
last_error:
type: object
description: The last error associated with this run. Will be `null` if there are no errors.
nullable: true
properties:
code:
type: string
description: One of `server_error`, `rate_limit_exceeded`, or `invalid_prompt`.
enum: ["server_error", "rate_limit_exceeded", "invalid_prompt"]
message:
type: string
description: A human-readable description of the error.
required:
- code
- message
expires_at:
description: The Unix timestamp (in seconds) for when the run will expire.
type: integer
nullable: true
started_at:
description: The Unix timestamp (in seconds) for when the run was started.
type: integer
nullable: true
cancelled_at:
description: The Unix timestamp (in seconds) for when the run was cancelled.
type: integer
nullable: true
failed_at:
description: The Unix timestamp (in seconds) for when the run failed.
type: integer
nullable: true
completed_at:
description: The Unix timestamp (in seconds) for when the run was completed.
type: integer
nullable: true
incomplete_details:
description: Details on why the run is incomplete. Will be `null` if the run is not incomplete.
type: object
nullable: true
properties:
reason:
description: The reason why the run is incomplete. This will point to which specific token limit was reached over the course of the run.
type: string
enum: ["max_completion_tokens", "max_prompt_tokens"]
model:
description: The model that the [assistant](/docs/api-reference/assistants) used for this run.
type: string
instructions:
description: The instructions that the [assistant](/docs/api-reference/assistants) used for this run.
type: string
tools:
description: The list of tools that the [assistant](/docs/api-reference/assistants) used for this run.
default: []
type: array
maxItems: 20
items:
oneOf:
- $ref: "#/components/schemas/AssistantToolsCode"
- $ref: "#/components/schemas/AssistantToolsFileSearch"
- $ref: "#/components/schemas/AssistantToolsFunction"
x-oaiExpandable: true
metadata:
description: *metadata_description
type: object
x-oaiTypeLabel: map
nullable: true
usage:
$ref: "#/components/schemas/RunCompletionUsage"
temperature:
description: The sampling temperature used for this run. If not set, defaults to 1.
type: number
nullable: true
top_p:
description: The nucleus sampling value used for this run. If not set, defaults to 1.
type: number
nullable: true
max_prompt_tokens:
type: integer
nullable: true
description: |
The maximum number of prompt tokens specified to have been used over the course of the run.
minimum: 256
max_completion_tokens:
type: integer
nullable: true
description: |
The maximum number of completion tokens specified to have been used over the course of the run.
minimum: 256
truncation_strategy:
$ref: "#/components/schemas/TruncationObject"
nullable: true
tool_choice:
$ref: "#/components/schemas/AssistantsApiToolChoiceOption"
nullable: true
response_format:
$ref: "#/components/schemas/AssistantsApiResponseFormatOption"
nullable: true
required:
- id
- object
- created_at
- thread_id
- assistant_id
- status
- required_action
- last_error
- expires_at
- started_at
- cancelled_at
- failed_at
- completed_at
- model
- instructions
- tools
- metadata
- usage
- incomplete_details
- max_prompt_tokens
- max_completion_tokens
- truncation_strategy
- tool_choice
- response_format
x-oaiMeta:
name: The run object
beta: true
example: |
{
"id": "run_abc123",
"object": "thread.run",
"created_at": 1698107661,
"assistant_id": "asst_abc123",
"thread_id": "thread_abc123",
"status": "completed",
"started_at": 1699073476,
"expires_at": null,
"cancelled_at": null,
"failed_at": null,
"completed_at": 1699073498,
"last_error": null,
"model": "gpt-4-turbo",
"instructions": null,
"tools": [{"type": "file_search"}, {"type": "code_interpreter"}],
"metadata": {},
"incomplete_details": null,
"usage": {
"prompt_tokens": 123,
"completion_tokens": 456,
"total_tokens": 579
},
"temperature": 1.0,
"top_p": 1.0,
"max_prompt_tokens": 1000,
"max_completion_tokens": 1000,
"truncation_strategy": {
"type": "auto",
"last_messages": null
},
"response_format": "auto",
"tool_choice": "auto"
}
CreateRunRequest:
type: object
additionalProperties: false
properties:
assistant_id:
description: The ID of the [assistant](/docs/api-reference/assistants) to use to execute this run.
type: string
model:
description: The ID of the [Model](/docs/api-reference/models) to be used to execute this run. If a value is provided here, it will override the model associated with the assistant. If not, the model associated with the assistant will be used.
example: "gpt-4-turbo"
anyOf:
- type: string
- type: string
enum:
[
"gpt-4-turbo",
"gpt-4-turbo-2024-04-09",
"gpt-4-0125-preview",
"gpt-4-turbo-preview",
"gpt-4-1106-preview",
"gpt-4-vision-preview",
"gpt-4",
"gpt-4-0314",
"gpt-4-0613",
"gpt-4-32k",
"gpt-4-32k-0314",
"gpt-4-32k-0613",
"gpt-3.5-turbo",
"gpt-3.5-turbo-16k",
"gpt-3.5-turbo-0613",
"gpt-3.5-turbo-1106",
"gpt-3.5-turbo-0125",
"gpt-3.5-turbo-16k-0613",
]
x-oaiTypeLabel: string
nullable: true
instructions:
description: Overrides the [instructions](/docs/api-reference/assistants/createAssistant) of the assistant. This is useful for modifying the behavior on a per-run basis.
type: string
nullable: true
additional_instructions:
description: Appends additional instructions at the end of the instructions for the run. This is useful for modifying the behavior on a per-run basis without overriding other instructions.
type: string
nullable: true
additional_messages:
description: Adds additional messages to the thread before creating the run.
type: array
items:
$ref: "#/components/schemas/CreateMessageRequest"
nullable: true
tools:
description: Override the tools the assistant can use for this run. This is useful for modifying the behavior on a per-run basis.
nullable: true
type: array
maxItems: 20
items:
oneOf:
- $ref: "#/components/schemas/AssistantToolsCode"
- $ref: "#/components/schemas/AssistantToolsFileSearch"
- $ref: "#/components/schemas/AssistantToolsFunction"
x-oaiExpandable: true
metadata:
description: *metadata_description
type: object
x-oaiTypeLabel: map
nullable: true
temperature:
type: number
minimum: 0
maximum: 2
default: 1
example: 1
nullable: true
description: *run_temperature_description
top_p:
type: number
minimum: 0
maximum: 1
default: 1
example: 1
nullable: true
description: &run_top_p_description |
An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.
We generally recommend altering this or temperature but not both.
stream:
type: boolean
nullable: true
description: |
If `true`, returns a stream of events that happen during the Run as server-sent events, terminating when the Run enters a terminal state with a `data: [DONE]` message.
max_prompt_tokens:
type: integer
nullable: true
description: |
The maximum number of prompt tokens that may be used over the course of the run. The run will make a best effort to use only the number of prompt tokens specified, across multiple turns of the run. If the run exceeds the number of prompt tokens specified, the run will end with status `incomplete`. See `incomplete_details` for more info.
minimum: 256
max_completion_tokens:
type: integer
nullable: true
description: |
The maximum number of completion tokens that may be used over the course of the run. The run will make a best effort to use only the number of completion tokens specified, across multiple turns of the run. If the run exceeds the number of completion tokens specified, the run will end with status `incomplete`. See `incomplete_details` for more info.
minimum: 256
truncation_strategy:
$ref: "#/components/schemas/TruncationObject"
nullable: true
tool_choice:
$ref: "#/components/schemas/AssistantsApiToolChoiceOption"
nullable: true
response_format:
$ref: "#/components/schemas/AssistantsApiResponseFormatOption"
nullable: true
required:
- thread_id
- assistant_id
ListRunsResponse:
type: object
properties:
object:
type: string
example: "list"
data:
type: array
items:
$ref: "#/components/schemas/RunObject"
first_id:
type: string
example: "run_abc123"
last_id:
type: string
example: "run_abc456"
has_more:
type: boolean
example: false
required:
- object
- data
- first_id
- last_id
- has_more
ModifyRunRequest:
type: object
additionalProperties: false
properties:
metadata:
description: *metadata_description
type: object
x-oaiTypeLabel: map
nullable: true
SubmitToolOutputsRunRequest:
type: object
additionalProperties: false
properties:
tool_outputs:
description: A list of tools for which the outputs are being submitted.
type: array
items:
type: object
properties:
tool_call_id:
type: string
description: The ID of the tool call in the `required_action` object within the run object the output is being submitted for.
output:
type: string
description: The output of the tool call to be submitted to continue the run.
stream:
type: boolean
nullable: true
description: |
If `true`, returns a stream of events that happen during the Run as server-sent events, terminating when the Run enters a terminal state with a `data: [DONE]` message.
required:
- tool_outputs
RunToolCallObject:
type: object
description: Tool call objects
properties:
id:
type: string
description: The ID of the tool call. This ID must be referenced when you submit the tool outputs in using the [Submit tool outputs to run](/docs/api-reference/runs/submitToolOutputs) endpoint.
type:
type: string
description: The type of tool call the output is required for. For now, this is always `function`.
enum: ["function"]
function:
type: object
description: The function definition.
properties:
name:
type: string
description: The name of the function.
arguments:
type: string
description: The arguments that the model expects you to pass to the function.
required:
- name
- arguments
required:
- id
- type
- function
CreateThreadAndRunRequest:
type: object
additionalProperties: false
properties:
assistant_id:
description: The ID of the [assistant](/docs/api-reference/assistants) to use to execute this run.
type: string
thread:
$ref: "#/components/schemas/CreateThreadRequest"
description: If no thread is provided, an empty thread will be created.
model:
description: The ID of the [Model](/docs/api-reference/models) to be used to execute this run. If a value is provided here, it will override the model associated with the assistant. If not, the model associated with the assistant will be used.
example: "gpt-4-turbo"
anyOf:
- type: string
- type: string
enum:
[
"gpt-4-turbo",
"gpt-4-turbo-2024-04-09",
"gpt-4-0125-preview",
"gpt-4-turbo-preview",
"gpt-4-1106-preview",
"gpt-4-vision-preview",
"gpt-4",
"gpt-4-0314",
"gpt-4-0613",
"gpt-4-32k",
"gpt-4-32k-0314",
"gpt-4-32k-0613",
"gpt-3.5-turbo",
"gpt-3.5-turbo-16k",
"gpt-3.5-turbo-0613",
"gpt-3.5-turbo-1106",
"gpt-3.5-turbo-0125",
"gpt-3.5-turbo-16k-0613",
]
x-oaiTypeLabel: string
nullable: true
instructions:
description: Override the default system message of the assistant. This is useful for modifying the behavior on a per-run basis.
type: string
nullable: true
tools:
description: Override the tools the assistant can use for this run. This is useful for modifying the behavior on a per-run basis.
nullable: true
type: array
maxItems: 20
items:
oneOf:
- $ref: "#/components/schemas/AssistantToolsCode"
- $ref: "#/components/schemas/AssistantToolsFileSearch"
- $ref: "#/components/schemas/AssistantToolsFunction"
tool_resources:
type: object
description: |
A set of resources that are used by the assistant's tools. The resources are specific to the type of tool. For example, the `code_interpreter` tool requires a list of file IDs, while the `file_search` tool requires a list of vector store IDs.
properties:
code_interpreter:
type: object
properties:
file_ids:
type: array
description: |
A list of [file](/docs/api-reference/files) IDs made available to the `code_interpreter` tool. There can be a maximum of 20 files associated with the tool.
default: []
maxItems: 20
items:
type: string
file_search:
type: object
properties:
vector_store_ids:
type: array
description: |
The ID of the [vector store](/docs/api-reference/vector-stores/object) attached to this assistant. There can be a maximum of 1 vector store attached to the assistant.
maxItems: 1
items:
type: string
nullable: true
metadata:
description: *metadata_description
type: object
x-oaiTypeLabel: map
nullable: true
temperature:
type: number
minimum: 0
maximum: 2
default: 1
example: 1
nullable: true
description: *run_temperature_description
top_p:
type: number
minimum: 0
maximum: 1
default: 1
example: 1
nullable: true
description: *run_top_p_description
stream:
type: boolean
nullable: true
description: |
If `true`, returns a stream of events that happen during the Run as server-sent events, terminating when the Run enters a terminal state with a `data: [DONE]` message.
max_prompt_tokens:
type: integer
nullable: true
description: |
The maximum number of prompt tokens that may be used over the course of the run. The run will make a best effort to use only the number of prompt tokens specified, across multiple turns of the run. If the run exceeds the number of prompt tokens specified, the run will end with status `incomplete`. See `incomplete_details` for more info.
minimum: 256
max_completion_tokens:
type: integer
nullable: true
description: |
The maximum number of completion tokens that may be used over the course of the run. The run will make a best effort to use only the number of completion tokens specified, across multiple turns of the run. If the run exceeds the number of completion tokens specified, the run will end with status `incomplete`. See `incomplete_details` for more info.
minimum: 256
truncation_strategy:
$ref: "#/components/schemas/TruncationObject"
nullable: true
tool_choice:
$ref: "#/components/schemas/AssistantsApiToolChoiceOption"
nullable: true
response_format:
$ref: "#/components/schemas/AssistantsApiResponseFormatOption"
nullable: true
required:
- thread_id
- assistant_id
ThreadObject:
type: object
title: Thread
description: Represents a thread that contains [messages](/docs/api-reference/messages).
properties:
id:
description: The identifier, which can be referenced in API endpoints.
type: string
object:
description: The object type, which is always `thread`.
type: string
enum: ["thread"]
created_at:
description: The Unix timestamp (in seconds) for when the thread was created.
type: integer
tool_resources:
type: object
description: |
A set of resources that are made available to the assistant's tools in this thread. The resources are specific to the type of tool. For example, the `code_interpreter` tool requires a list of file IDs, while the `file_search` tool requires a list of vector store IDs.
properties:
code_interpreter:
type: object
properties:
file_ids:
type: array
description: |
A list of [file](/docs/api-reference/files) IDs made available to the `code_interpreter` tool. There can be a maximum of 20 files associated with the tool.
default: []
maxItems: 20
items:
type: string
file_search:
type: object
properties:
vector_store_ids:
type: array
description: |
The [vector store](/docs/api-reference/vector-stores/object) attached to this thread. There can be a maximum of 1 vector store attached to the thread.
maxItems: 1
items:
type: string
nullable: true
metadata:
description: *metadata_description
type: object
x-oaiTypeLabel: map
nullable: true
required:
- id
- object
- created_at
- tool_resources
- metadata
x-oaiMeta:
name: The thread object
beta: true
example: |
{
"id": "thread_abc123",
"object": "thread",
"created_at": 1698107661,
"metadata": {}
}
CreateThreadRequest:
type: object
additionalProperties: false
properties:
messages:
description: A list of [messages](/docs/api-reference/messages) to start the thread with.
type: array
items:
$ref: "#/components/schemas/CreateMessageRequest"
tool_resources:
type: object
description: |
A set of resources that are made available to the assistant's tools in this thread. The resources are specific to the type of tool. For example, the `code_interpreter` tool requires a list of file IDs, while the `file_search` tool requires a list of vector store IDs.
properties:
code_interpreter:
type: object
properties:
file_ids:
type: array
description: |
A list of [file](/docs/api-reference/files) IDs made available to the `code_interpreter` tool. There can be a maximum of 20 files associated with the tool.
default: []
maxItems: 20
items:
type: string
file_search:
type: object
properties:
vector_store_ids:
type: array
description: |
The [vector store](/docs/api-reference/vector-stores/object) attached to this thread. There can be a maximum of 1 vector store attached to the thread.
maxItems: 1
items:
type: string
vector_stores:
type: array
description: |
A helper to create a [vector store](/docs/api-reference/vector-stores/object) with file_ids and attach it to this thread. There can be a maximum of 1 vector store attached to the thread.
maxItems: 1
items:
type: object
properties:
file_ids:
type: array
description: |
A list of [file](/docs/api-reference/files) IDs to add to the vector store. There can be a maximum of 10000 files in a vector store.
maxItems: 10000
items:
type: string
metadata:
type: object
description: |
Set of 16 key-value pairs that can be attached to a vector store. This can be useful for storing additional information about the vector store in a structured format. Keys can be a maximum of 64 characters long and values can be a maxium of 512 characters long.
x-oaiTypeLabel: map
oneOf:
- required: [vector_store_ids]
- required: [vector_stores]
nullable: true
metadata:
description: *metadata_description
type: object
x-oaiTypeLabel: map
nullable: true
ModifyThreadRequest:
type: object
additionalProperties: false
properties:
tool_resources:
type: object
description: |
A set of resources that are made available to the assistant's tools in this thread. The resources are specific to the type of tool. For example, the `code_interpreter` tool requires a list of file IDs, while the `file_search` tool requires a list of vector store IDs.
properties:
code_interpreter:
type: object
properties:
file_ids:
type: array
description: |
A list of [file](/docs/api-reference/files) IDs made available to the `code_interpreter` tool. There can be a maximum of 20 files associated with the tool.
default: []
maxItems: 20
items:
type: string
file_search:
type: object
properties:
vector_store_ids:
type: array
description: |
The [vector store](/docs/api-reference/vector-stores/object) attached to this thread. There can be a maximum of 1 vector store attached to the thread.
maxItems: 1
items:
type: string
nullable: true
metadata:
description: *metadata_description
type: object
x-oaiTypeLabel: map
nullable: true
DeleteThreadResponse:
type: object
properties:
id:
type: string
deleted:
type: boolean
object:
type: string
enum: [thread.deleted]
required:
- id
- object
- deleted
ListThreadsResponse:
properties:
object:
type: string
example: "list"
data:
type: array
items:
$ref: "#/components/schemas/ThreadObject"
first_id:
type: string
example: "asst_abc123"
last_id:
type: string
example: "asst_abc456"
has_more:
type: boolean
example: false
required:
- object
- data
- first_id
- last_id
- has_more
MessageObject:
type: object
title: The message object
description: Represents a message within a [thread](/docs/api-reference/threads).
properties:
id:
description: The identifier, which can be referenced in API endpoints.
type: string
object:
description: The object type, which is always `thread.message`.
type: string
enum: ["thread.message"]
created_at:
description: The Unix timestamp (in seconds) for when the message was created.
type: integer
thread_id:
description: The [thread](/docs/api-reference/threads) ID that this message belongs to.
type: string
status:
description: The status of the message, which can be either `in_progress`, `incomplete`, or `completed`.
type: string
enum: ["in_progress", "incomplete", "completed"]
incomplete_details:
description: On an incomplete message, details about why the message is incomplete.
type: object
properties:
reason:
type: string
description: The reason the message is incomplete.
enum:
[
"content_filter",
"max_tokens",
"run_cancelled",
"run_expired",
"run_failed",
]
nullable: true
required:
- reason
completed_at:
description: The Unix timestamp (in seconds) for when the message was completed.
type: integer
nullable: true
incomplete_at:
description: The Unix timestamp (in seconds) for when the message was marked as incomplete.
type: integer
nullable: true
role:
description: The entity that produced the message. One of `user` or `assistant`.
type: string
enum: ["user", "assistant"]
content:
description: The content of the message in array of text and/or images.
type: array
items:
oneOf:
- $ref: "#/components/schemas/MessageContentImageFileObject"
- $ref: "#/components/schemas/MessageContentTextObject"
x-oaiExpandable: true
assistant_id:
description: If applicable, the ID of the [assistant](/docs/api-reference/assistants) that authored this message.
type: string
nullable: true
run_id:
description: The ID of the [run](/docs/api-reference/runs) associated with the creation of this message. Value is `null` when messages are created manually using the create message or create thread endpoints.
type: string
nullable: true
attachments:
type: array
items:
type: object
properties:
file_id:
type: string
description: The ID of the file to attach to the message.
tools:
description: The tools to add this file to.
type: array
items:
oneOf:
- $ref: "#/components/schemas/AssistantToolsCode"
- $ref: "#/components/schemas/AssistantToolsFileSearch"
x-oaiExpandable: true
description: A list of files attached to the message, and the tools they were added to.
nullable: true
metadata:
description: *metadata_description
type: object
x-oaiTypeLabel: map
nullable: true
required:
- id
- object
- created_at
- thread_id
- status
- incomplete_details
- completed_at
- incomplete_at
- role
- content
- assistant_id
- run_id
- attachments
- metadata
x-oaiMeta:
name: The message object
beta: true
example: |
{
"id": "msg_abc123",
"object": "thread.message",
"created_at": 1698983503,
"thread_id": "thread_abc123",
"role": "assistant",
"content": [
{
"type": "text",
"text": {
"value": "Hi! How can I help you today?",
"annotations": []
}
}
],
"assistant_id": "asst_abc123",
"run_id": "run_abc123",
"attachments": [],
"metadata": {}
}
MessageDeltaObject:
type: object
title: Message delta object
description: |
Represents a message delta i.e. any changed fields on a message during streaming.
properties:
id:
description: The identifier of the message, which can be referenced in API endpoints.
type: string
object:
description: The object type, which is always `thread.message.delta`.
type: string
enum: ["thread.message.delta"]
delta:
description: The delta containing the fields that have changed on the Message.
type: object
properties:
role:
description: The entity that produced the message. One of `user` or `assistant`.
type: string
enum: ["user", "assistant"]
content:
description: The content of the message in array of text and/or images.
type: array
items:
oneOf:
- $ref: "#/components/schemas/MessageDeltaContentImageFileObject"
- $ref: "#/components/schemas/MessageDeltaContentTextObject"
x-oaiExpandable: true
required:
- id
- object
- delta
x-oaiMeta:
name: The message delta object
beta: true
example: |
{
"id": "msg_123",
"object": "thread.message.delta",
"delta": {
"content": [
{
"index": 0,
"type": "text",
"text": { "value": "Hello", "annotations": [] }
}
]
}
}
CreateMessageRequest:
type: object
additionalProperties: false
required:
- role
- content
properties:
role:
type: string
enum: ["user", "assistant"]
description: |
The role of the entity that is creating the message. Allowed values include:
- `user`: Indicates the message is sent by an actual user and should be used in most cases to represent user-generated messages.
- `assistant`: Indicates the message is generated by the assistant. Use this value to insert messages from the assistant into the conversation.
content:
type: string
minLength: 1
maxLength: 256000
description: The content of the message.
attachments:
type: array
items:
type: object
properties:
file_id:
type: string
description: The ID of the file to attach to the message.
tools:
description: The tools to add this file to.
type: array
items:
oneOf:
- $ref: "#/components/schemas/AssistantToolsCode"
- $ref: "#/components/schemas/AssistantToolsFileSearch"
x-oaiExpandable: true
description: A list of files attached to the message, and the tools they should be added to.
required:
- file_id
- tools
nullable: true
metadata:
description: *metadata_description
type: object
x-oaiTypeLabel: map
nullable: true
ModifyMessageRequest:
type: object
additionalProperties: false
properties:
metadata:
description: *metadata_description
type: object
x-oaiTypeLabel: map
nullable: true
DeleteMessageResponse:
type: object
properties:
id:
type: string
deleted:
type: boolean
object:
type: string
enum: [thread.message.deleted]
required:
- id
- object
- deleted
ListMessagesResponse:
properties:
object:
type: string
example: "list"
data:
type: array
items:
$ref: "#/components/schemas/MessageObject"
first_id:
type: string
example: "msg_abc123"
last_id:
type: string
example: "msg_abc123"
has_more:
type: boolean
example: false
required:
- object
- data
- first_id
- last_id
- has_more
MessageContentImageFileObject:
title: Image file
type: object
description: References an image [File](/docs/api-reference/files) in the content of a message.
properties:
type:
description: Always `image_file`.
type: string
enum: ["image_file"]
image_file:
type: object
properties:
file_id:
description: The [File](/docs/api-reference/files) ID of the image in the message content.
type: string
required:
- file_id
required:
- type
- image_file
MessageDeltaContentImageFileObject:
title: Image file
type: object
description: References an image [File](/docs/api-reference/files) in the content of a message.
properties:
index:
type: integer
description: The index of the content part in the message.
type:
description: Always `image_file`.
type: string
enum: ["image_file"]
image_file:
type: object
properties:
file_id:
description: The [File](/docs/api-reference/files) ID of the image in the message content.
type: string
required:
- index
- type
MessageContentTextObject:
title: Text
type: object
description: The text content that is part of a message.
properties:
type:
description: Always `text`.
type: string
enum: ["text"]
text:
type: object
properties:
value:
description: The data that makes up the text.
type: string
annotations:
type: array
items:
oneOf:
- $ref: "#/components/schemas/MessageContentTextAnnotationsFileCitationObject"
- $ref: "#/components/schemas/MessageContentTextAnnotationsFilePathObject"
x-oaiExpandable: true
required:
- value
- annotations
required:
- type
- text
MessageContentTextAnnotationsFileCitationObject:
title: File citation
type: object
description: A citation within the message that points to a specific quote from a specific File associated with the assistant or the message. Generated when the assistant uses the "file_search" tool to search files.
properties:
type:
description: Always `file_citation`.
type: string
enum: ["file_citation"]
text:
description: The text in the message content that needs to be replaced.
type: string
file_citation:
type: object
properties:
file_id:
description: The ID of the specific File the citation is from.
type: string
quote:
description: The specific quote in the file.
type: string
required:
- file_id
- quote
start_index:
type: integer
minimum: 0
end_index:
type: integer
minimum: 0
required:
- type
- text
- file_citation
- start_index
- end_index
MessageContentTextAnnotationsFilePathObject:
title: File path
type: object
description: A URL for the file that's generated when the assistant used the `code_interpreter` tool to generate a file.
properties:
type:
description: Always `file_path`.
type: string
enum: ["file_path"]
text:
description: The text in the message content that needs to be replaced.
type: string
file_path:
type: object
properties:
file_id:
description: The ID of the file that was generated.
type: string
required:
- file_id
start_index:
type: integer
minimum: 0
end_index:
type: integer
minimum: 0
required:
- type
- text
- file_path
- start_index
- end_index
MessageDeltaContentTextObject:
title: Text
type: object
description: The text content that is part of a message.
properties:
index:
type: integer
description: The index of the content part in the message.
type:
description: Always `text`.
type: string
enum: ["text"]
text:
type: object
properties:
value:
description: The data that makes up the text.
type: string
annotations:
type: array
items:
oneOf:
- $ref: "#/components/schemas/MessageDeltaContentTextAnnotationsFileCitationObject"
- $ref: "#/components/schemas/MessageDeltaContentTextAnnotationsFilePathObject"
x-oaiExpandable: true
required:
- index
- type
MessageDeltaContentTextAnnotationsFileCitationObject:
title: File citation
type: object
description: A citation within the message that points to a specific quote from a specific File associated with the assistant or the message. Generated when the assistant uses the "file_search" tool to search files.
properties:
index:
type: integer
description: The index of the annotation in the text content part.
type:
description: Always `file_citation`.
type: string
enum: ["file_citation"]
text:
description: The text in the message content that needs to be replaced.
type: string
file_citation:
type: object
properties:
file_id:
description: The ID of the specific File the citation is from.
type: string
quote:
description: The specific quote in the file.
type: string
start_index:
type: integer
minimum: 0
end_index:
type: integer
minimum: 0
required:
- index
- type
MessageDeltaContentTextAnnotationsFilePathObject:
title: File path
type: object
description: A URL for the file that's generated when the assistant used the `code_interpreter` tool to generate a file.
properties:
index:
type: integer
description: The index of the annotation in the text content part.
type:
description: Always `file_path`.
type: string
enum: ["file_path"]
text:
description: The text in the message content that needs to be replaced.
type: string
file_path:
type: object
properties:
file_id:
description: The ID of the file that was generated.
type: string
start_index:
type: integer
minimum: 0
end_index:
type: integer
minimum: 0
required:
- index
- type
RunStepObject:
type: object
title: Run steps
description: |
Represents a step in execution of a run.
properties:
id:
description: The identifier of the run step, which can be referenced in API endpoints.
type: string
object:
description: The object type, which is always `thread.run.step`.
type: string
enum: ["thread.run.step"]
created_at:
description: The Unix timestamp (in seconds) for when the run step was created.
type: integer
assistant_id:
description: The ID of the [assistant](/docs/api-reference/assistants) associated with the run step.
type: string
thread_id:
description: The ID of the [thread](/docs/api-reference/threads) that was run.
type: string
run_id:
description: The ID of the [run](/docs/api-reference/runs) that this run step is a part of.
type: string
type:
description: The type of run step, which can be either `message_creation` or `tool_calls`.
type: string
enum: ["message_creation", "tool_calls"]
status:
description: The status of the run step, which can be either `in_progress`, `cancelled`, `failed`, `completed`, or `expired`.
type: string
enum: ["in_progress", "cancelled", "failed", "completed", "expired"]
step_details:
type: object
description: The details of the run step.
oneOf:
- $ref: "#/components/schemas/RunStepDetailsMessageCreationObject"
- $ref: "#/components/schemas/RunStepDetailsToolCallsObject"
x-oaiExpandable: true
last_error:
type: object
description: The last error associated with this run step. Will be `null` if there are no errors.
nullable: true
properties:
code:
type: string
description: One of `server_error` or `rate_limit_exceeded`.
enum: ["server_error", "rate_limit_exceeded"]
message:
type: string
description: A human-readable description of the error.
required:
- code
- message
expired_at:
description: The Unix timestamp (in seconds) for when the run step expired. A step is considered expired if the parent run is expired.
type: integer
nullable: true
cancelled_at:
description: The Unix timestamp (in seconds) for when the run step was cancelled.
type: integer
nullable: true
failed_at:
description: The Unix timestamp (in seconds) for when the run step failed.
type: integer
nullable: true
completed_at:
description: The Unix timestamp (in seconds) for when the run step completed.
type: integer
nullable: true
metadata:
description: *metadata_description
type: object
x-oaiTypeLabel: map
nullable: true
usage:
$ref: "#/components/schemas/RunStepCompletionUsage"
required:
- id
- object
- created_at
- assistant_id
- thread_id
- run_id
- type
- status
- step_details
- last_error
- expired_at
- cancelled_at
- failed_at
- completed_at
- metadata
- usage
x-oaiMeta:
name: The run step object
beta: true
example: *run_step_object_example
RunStepDeltaObject:
type: object
title: Run step delta object
description: |
Represents a run step delta i.e. any changed fields on a run step during streaming.
properties:
id:
description: The identifier of the run step, which can be referenced in API endpoints.
type: string
object:
description: The object type, which is always `thread.run.step.delta`.
type: string
enum: ["thread.run.step.delta"]
delta:
description: The delta containing the fields that have changed on the run step.
type: object
properties:
step_details:
type: object
description: The details of the run step.
oneOf:
- $ref: "#/components/schemas/RunStepDeltaStepDetailsMessageCreationObject"
- $ref: "#/components/schemas/RunStepDeltaStepDetailsToolCallsObject"
x-oaiExpandable: true
required:
- id
- object
- delta
x-oaiMeta:
name: The run step delta object
beta: true
example: |
{
"id": "step_123",
"object": "thread.run.step.delta",
"delta": {
"step_details": {
"type": "tool_calls",
"tool_calls": [
{
"index": 0,
"id": "call_123",
"type": "code_interpreter",
"code_interpreter": { "input": "", "outputs": [] }
}
]
}
}
}
ListRunStepsResponse:
properties:
object:
type: string
example: "list"
data:
type: array
items:
$ref: "#/components/schemas/RunStepObject"
first_id:
type: string
example: "step_abc123"
last_id:
type: string
example: "step_abc456"
has_more:
type: boolean
example: false
required:
- object
- data
- first_id
- last_id
- has_more
RunStepDetailsMessageCreationObject:
title: Message creation
type: object
description: Details of the message creation by the run step.
properties:
type:
description: Always `message_creation`.
type: string
enum: ["message_creation"]
message_creation:
type: object
properties:
message_id:
type: string
description: The ID of the message that was created by this run step.
required:
- message_id
required:
- type
- message_creation
RunStepDeltaStepDetailsMessageCreationObject:
title: Message creation
type: object
description: Details of the message creation by the run step.
properties:
type:
description: Always `message_creation`.
type: string
enum: ["message_creation"]
message_creation:
type: object
properties:
message_id:
type: string
description: The ID of the message that was created by this run step.
required:
- type
RunStepDetailsToolCallsObject:
title: Tool calls
type: object
description: Details of the tool call.
properties:
type:
description: Always `tool_calls`.
type: string
enum: ["tool_calls"]
tool_calls:
type: array
description: |
An array of tool calls the run step was involved in. These can be associated with one of three types of tools: `code_interpreter`, `file_search`, or `function`.
items:
oneOf:
- $ref: "#/components/schemas/RunStepDetailsToolCallsCodeObject"
- $ref: "#/components/schemas/RunStepDetailsToolCallsFileSearchObject"
- $ref: "#/components/schemas/RunStepDetailsToolCallsFunctionObject"
x-oaiExpandable: true
required:
- type
- tool_calls
RunStepDeltaStepDetailsToolCallsObject:
title: Tool calls
type: object
description: Details of the tool call.
properties:
type:
description: Always `tool_calls`.
type: string
enum: ["tool_calls"]
tool_calls:
type: array
description: |
An array of tool calls the run step was involved in. These can be associated with one of three types of tools: `code_interpreter`, `file_search`, or `function`.
items:
oneOf:
- $ref: "#/components/schemas/RunStepDeltaStepDetailsToolCallsCodeObject"
- $ref: "#/components/schemas/RunStepDeltaStepDetailsToolCallsFileSearchObject"
- $ref: "#/components/schemas/RunStepDeltaStepDetailsToolCallsFunctionObject"
x-oaiExpandable: true
required:
- type
RunStepDetailsToolCallsCodeObject:
title: Code Interpreter tool call
type: object
description: Details of the Code Interpreter tool call the run step was involved in.
properties:
id:
type: string
description: The ID of the tool call.
type:
type: string
description: The type of tool call. This is always going to be `code_interpreter` for this type of tool call.
enum: ["code_interpreter"]
code_interpreter:
type: object
description: The Code Interpreter tool call definition.
required:
- input
- outputs
properties:
input:
type: string
description: The input to the Code Interpreter tool call.
outputs:
type: array
description: The outputs from the Code Interpreter tool call. Code Interpreter can output one or more items, including text (`logs`) or images (`image`). Each of these are represented by a different object type.
items:
type: object
oneOf:
- $ref: "#/components/schemas/RunStepDetailsToolCallsCodeOutputLogsObject"
- $ref: "#/components/schemas/RunStepDetailsToolCallsCodeOutputImageObject"
x-oaiExpandable: true
required:
- id
- type
- code_interpreter
RunStepDeltaStepDetailsToolCallsCodeObject:
title: Code interpreter tool call
type: object
description: Details of the Code Interpreter tool call the run step was involved in.
properties:
index:
type: integer
description: The index of the tool call in the tool calls array.
id:
type: string
description: The ID of the tool call.
type:
type: string
description: The type of tool call. This is always going to be `code_interpreter` for this type of tool call.
enum: ["code_interpreter"]
code_interpreter:
type: object
description: The Code Interpreter tool call definition.
properties:
input:
type: string
description: The input to the Code Interpreter tool call.
outputs:
type: array
description: The outputs from the Code Interpreter tool call. Code Interpreter can output one or more items, including text (`logs`) or images (`image`). Each of these are represented by a different object type.
items:
type: object
oneOf:
- $ref: "#/components/schemas/RunStepDeltaStepDetailsToolCallsCodeOutputLogsObject"
- $ref: "#/components/schemas/RunStepDeltaStepDetailsToolCallsCodeOutputImageObject"
x-oaiExpandable: true
required:
- index
- type
RunStepDetailsToolCallsCodeOutputLogsObject:
title: Code Interpreter log output
type: object
description: Text output from the Code Interpreter tool call as part of a run step.
properties:
type:
description: Always `logs`.
type: string
enum: ["logs"]
logs:
type: string
description: The text output from the Code Interpreter tool call.
required:
- type
- logs
RunStepDeltaStepDetailsToolCallsCodeOutputLogsObject:
title: Code interpreter log output
type: object
description: Text output from the Code Interpreter tool call as part of a run step.
properties:
index:
type: integer
description: The index of the output in the outputs array.
type:
description: Always `logs`.
type: string
enum: ["logs"]
logs:
type: string
description: The text output from the Code Interpreter tool call.
required:
- index
- type
RunStepDetailsToolCallsCodeOutputImageObject:
title: Code Interpreter image output
type: object
properties:
type:
description: Always `image`.
type: string
enum: ["image"]
image:
type: object
properties:
file_id:
description: The [file](/docs/api-reference/files) ID of the image.
type: string
required:
- file_id
required:
- type
- image
RunStepDeltaStepDetailsToolCallsCodeOutputImageObject:
title: Code interpreter image output
type: object
properties:
index:
type: integer
description: The index of the output in the outputs array.
type:
description: Always `image`.
type: string
enum: ["image"]
image:
type: object
properties:
file_id:
description: The [file](/docs/api-reference/files) ID of the image.
type: string
required:
- index
- type
RunStepDetailsToolCallsFileSearchObject:
title: File search tool call
type: object
properties:
id:
type: string
description: The ID of the tool call object.
type:
type: string
description: The type of tool call. This is always going to be `file_search` for this type of tool call.
enum: ["file_search"]
file_search:
type: object
description: For now, this is always going to be an empty object.
x-oaiTypeLabel: map
required:
- id
- type
- file_search
RunStepDeltaStepDetailsToolCallsFileSearchObject:
title: File search tool call
type: object
properties:
index:
type: integer
description: The index of the tool call in the tool calls array.
id:
type: string
description: The ID of the tool call object.
type:
type: string
description: The type of tool call. This is always going to be `file_search` for this type of tool call.
enum: ["file_search"]
file_search:
type: object
description: For now, this is always going to be an empty object.
x-oaiTypeLabel: map
required:
- index
- type
- file_search
RunStepDetailsToolCallsFunctionObject:
type: object
title: Function tool call
properties:
id:
type: string
description: The ID of the tool call object.
type:
type: string
description: The type of tool call. This is always going to be `function` for this type of tool call.
enum: ["function"]
function:
type: object
description: The definition of the function that was called.
properties:
name:
type: string
description: The name of the function.
arguments:
type: string
description: The arguments passed to the function.
output:
type: string
description: The output of the function. This will be `null` if the outputs have not been [submitted](/docs/api-reference/runs/submitToolOutputs) yet.
nullable: true
required:
- name
- arguments
- output
required:
- id
- type
- function
RunStepDeltaStepDetailsToolCallsFunctionObject:
type: object
title: Function tool call
properties:
index:
type: integer
description: The index of the tool call in the tool calls array.
id:
type: string
description: The ID of the tool call object.
type:
type: string
description: The type of tool call. This is always going to be `function` for this type of tool call.
enum: ["function"]
function:
type: object
description: The definition of the function that was called.
properties:
name:
type: string
description: The name of the function.
arguments:
type: string
description: The arguments passed to the function.
output:
type: string
description: The output of the function. This will be `null` if the outputs have not been [submitted](/docs/api-reference/runs/submitToolOutputs) yet.
nullable: true
required:
- index
- type
VectorStoreExpirationAfter:
type: object
title: Vector store expiration policy
description: The expiration policy for a vector store.
properties:
anchor:
description: "Anchor timestamp after which the expiration policy applies. Supported anchors: `last_active_at`."
type: string
enum: ["last_active_at"]
days:
description: The number of days after the anchor time that the vector store will expire.
type: integer
minimum: 1
maximum: 365
required:
- anchor
- days
VectorStoreObject:
type: object
title: Vector store
description: A vector store is a collection of processed files can be used by the `file_search` tool.
properties:
id:
description: The identifier, which can be referenced in API endpoints.
type: string
object:
description: The object type, which is always `vector_store`.
type: string
enum: ["vector_store"]
created_at:
description: The Unix timestamp (in seconds) for when the vector store was created.
type: integer
name:
description: The name of the vector store.
type: string
usage_bytes:
description: The total number of bytes used by the files in the vector store.
type: integer
file_counts:
type: object
properties:
in_progress:
description: The number of files that are currently being processed.
type: integer
completed:
description: The number of files that have been successfully processed.
type: integer
failed:
description: The number of files that have failed to process.
type: integer
cancelled:
description: The number of files that were cancelled.
type: integer
total:
description: The total number of files.
type: integer
required:
- in_progress
- completed
- failed
- cancelled
- total
status:
description: The status of the vector store, which can be either `expired`, `in_progress`, or `completed`. A status of `completed` indicates that the vector store is ready for use.
type: string
enum: ["expired", "in_progress", "completed"]
expires_after:
$ref: "#/components/schemas/VectorStoreExpirationAfter"
expires_at:
description: The Unix timestamp (in seconds) for when the vector store will expire.
type: integer
nullable: true
last_active_at:
description: The Unix timestamp (in seconds) for when the vector store was last active.
type: integer
nullable: true
metadata:
description: *metadata_description
type: object
x-oaiTypeLabel: map
nullable: true
required:
- id
- object
- usage_bytes
- created_at
- status
- last_active_at
- name
- file_counts
- metadata
x-oaiMeta:
name: The vector store object
beta: true
example: |
{
"id": "vs_123",
"object": "vector_store",
"created_at": 1698107661,
"usage_bytes": 123456,
"last_active_at": 1698107661,
"name": "my_vector_store",
"status": "completed",
"file_counts": {
"in_progress": 0,
"completed": 100,
"cancelled": 0,
"failed": 0,
"total": 100
},
"metadata": {},
"last_used_at": 1698107661
}
CreateVectorStoreRequest:
type: object
additionalProperties: false
properties:
file_ids:
description: A list of [File](/docs/api-reference/files) IDs that the vector store should use. Useful for tools like `file_search` that can access files.
type: array
maxItems: 500
items:
type: string
name:
description: The name of the vector store.
type: string
expires_after:
$ref: "#/components/schemas/VectorStoreExpirationAfter"
metadata:
description: *metadata_description
type: object
x-oaiTypeLabel: map
nullable: true
UpdateVectorStoreRequest:
type: object
additionalProperties: false
properties:
name:
description: The name of the vector store.
type: string
nullable: true
expires_after:
$ref: "#/components/schemas/VectorStoreExpirationAfter"
nullable: true
metadata:
description: *metadata_description
type: object
x-oaiTypeLabel: map
nullable: true
ListVectorStoresResponse:
properties:
object:
type: string
example: "list"
data:
type: array
items:
$ref: "#/components/schemas/VectorStoreObject"
first_id:
type: string
example: "vs_abc123"
last_id:
type: string
example: "vs_abc456"
has_more:
type: boolean
example: false
required:
- object
- data
- first_id
- last_id
- has_more
DeleteVectorStoreResponse:
type: object
properties:
id:
type: string
deleted:
type: boolean
object:
type: string
enum: [vector_store.deleted]
required:
- id
- object
- deleted
VectorStoreFileObject:
type: object
title: Vector store files
description: A list of files attached to a vector store.
properties:
id:
description: The identifier, which can be referenced in API endpoints.
type: string
object:
description: The object type, which is always `vector_store.file`.
type: string
enum: ["vector_store.file"]
usage_bytes:
description: The total vector store usage in bytes. Note that this may be different from the original file size.
type: integer
created_at:
description: The Unix timestamp (in seconds) for when the vector store file was created.
type: integer
vector_store_id:
description: The ID of the [vector store](/docs/api-reference/vector-stores/object) that the [File](/docs/api-reference/files) is attached to.
type: string
status:
description: The status of the vector store file, which can be either `in_progress`, `completed`, `cancelled`, or `failed`. The status `completed` indicates that the vector store file is ready for use.
type: string
enum: ["in_progress", "completed", "cancelled", "failed"]
last_error:
type: object
description: The last error associated with this vector store file. Will be `null` if there are no errors.
nullable: true
properties:
code:
type: string
description: One of `server_error` or `rate_limit_exceeded`.
enum:
[
"internal_error",
"file_not_found",
"parsing_error",
"unhandled_mime_type",
]
message:
type: string
description: A human-readable description of the error.
required:
- code
- message
required:
- id
- object
- usage_bytes
- created_at
- vector_store_id
- status
- last_error
x-oaiMeta:
name: The vector store file object
beta: true
example: |
{
"id": "file-abc123",
"object": "vector_store.file",
"usage_bytes": 1234,
"created_at": 1698107661,
"vector_store_id": "vs_abc123",
"status": "completed",
"last_error": null
}
CreateVectorStoreFileRequest:
type: object
additionalProperties: false
properties:
file_id:
description: A [File](/docs/api-reference/files) ID that the vector store should use. Useful for tools like `file_search` that can access files.
type: string
required:
- file_id
ListVectorStoreFilesResponse:
properties:
object:
type: string
example: "list"
data:
type: array
items:
$ref: "#/components/schemas/VectorStoreFileObject"
first_id:
type: string
example: "file-abc123"
last_id:
type: string
example: "file-abc456"
has_more:
type: boolean
example: false
required:
- object
- data
- first_id
- last_id
- has_more
DeleteVectorStoreFileResponse:
type: object
properties:
id:
type: string
deleted:
type: boolean
object:
type: string
enum: [vector_store.file.deleted]
required:
- id
- object
- deleted
VectorStoreFileBatchObject:
type: object
title: Vector store file batch
description: A batch of files attached to a vector store.
properties:
id:
description: The identifier, which can be referenced in API endpoints.
type: string
object:
description: The object type, which is always `vector_store.file_batch`.
type: string
enum: ["vector_store.files_batch"]
created_at:
description: The Unix timestamp (in seconds) for when the vector store files batch was created.
type: integer
vector_store_id:
description: The ID of the [vector store](/docs/api-reference/vector-stores/object) that the [File](/docs/api-reference/files) is attached to.
type: string
status:
description: The status of the vector store files batch, which can be either `in_progress`, `completed`, `cancelled` or `failed`.
type: string
enum: ["in_progress", "completed", "cancelled", "failed"]
file_counts:
type: object
properties:
in_progress:
description: The number of files that are currently being processed.
type: integer
completed:
description: The number of files that have been processed.
type: integer
failed:
description: The number of files that have failed to process.
type: integer
cancelled:
description: The number of files that where cancelled.
type: integer
total:
description: The total number of files.
type: integer
required:
- in_progress
- completed
- cancelled
- failed
- total
required:
- id
- object
- created_at
- vector_store_id
- status
- file_counts
x-oaiMeta:
name: The vector store files batch object
beta: true
example: |
{
"id": "vsfb_123",
"object": "vector_store.files_batch",
"created_at": 1698107661,
"vector_store_id": "vs_abc123",
"status": "completed",
"file_counts": {
"in_progress": 0,
"completed": 100,
"failed": 0,
"cancelled": 0,
"total": 100
}
}
CreateVectorStoreFileBatchRequest:
type: object
additionalProperties: false
properties:
file_ids:
description: A list of [File](/docs/api-reference/files) IDs that the vector store should use. Useful for tools like `file_search` that can access files.
type: array
minItems: 1
maxItems: 500
items:
type: string
required:
- file_ids
AssistantStreamEvent:
description: |
Represents an event emitted when streaming a Run.
Each event in a server-sent events stream has an `event` and `data` property:
```
event: thread.created
data: {"id": "thread_123", "object": "thread", ...}
```
We emit events whenever a new object is created, transitions to a new state, or is being
streamed in parts (deltas). For example, we emit `thread.run.created` when a new run
is created, `thread.run.completed` when a run completes, and so on. When an Assistant chooses
to create a message during a run, we emit a `thread.message.created event`, a
`thread.message.in_progress` event, many `thread.message.delta` events, and finally a
`thread.message.completed` event.
We may add additional events over time, so we recommend handling unknown events gracefully
in your code. See the [Assistants API quickstart](/docs/assistants/overview) to learn how to
integrate the Assistants API with streaming.
oneOf:
- $ref: "#/components/schemas/ThreadStreamEvent"
- $ref: "#/components/schemas/RunStreamEvent"
- $ref: "#/components/schemas/RunStepStreamEvent"
- $ref: "#/components/schemas/MessageStreamEvent"
- $ref: "#/components/schemas/ErrorEvent"
- $ref: "#/components/schemas/DoneEvent"
x-oaiMeta:
name: Assistant stream events
beta: true
ThreadStreamEvent:
oneOf:
- type: object
properties:
event:
type: string
enum: ["thread.created"]
data:
$ref: "#/components/schemas/ThreadObject"
required:
- event
- data
description: Occurs when a new [thread](/docs/api-reference/threads/object) is created.
x-oaiMeta:
dataDescription: "`data` is a [thread](/docs/api-reference/threads/object)"
RunStreamEvent:
oneOf:
- type: object
properties:
event:
type: string
enum: ["thread.run.created"]
data:
$ref: "#/components/schemas/RunObject"
required:
- event
- data
description: Occurs when a new [run](/docs/api-reference/runs/object) is created.
x-oaiMeta:
dataDescription: "`data` is a [run](/docs/api-reference/runs/object)"
- type: object
properties:
event:
type: string
enum: ["thread.run.queued"]
data:
$ref: "#/components/schemas/RunObject"
required:
- event
- data
description: Occurs when a [run](/docs/api-reference/runs/object) moves to a `queued` status.
x-oaiMeta:
dataDescription: "`data` is a [run](/docs/api-reference/runs/object)"
- type: object
properties:
event:
type: string
enum: ["thread.run.in_progress"]
data:
$ref: "#/components/schemas/RunObject"
required:
- event
- data
description: Occurs when a [run](/docs/api-reference/runs/object) moves to an `in_progress` status.
x-oaiMeta:
dataDescription: "`data` is a [run](/docs/api-reference/runs/object)"
- type: object
properties:
event:
type: string
enum: ["thread.run.requires_action"]
data:
$ref: "#/components/schemas/RunObject"
required:
- event
- data
description: Occurs when a [run](/docs/api-reference/runs/object) moves to a `requires_action` status.
x-oaiMeta:
dataDescription: "`data` is a [run](/docs/api-reference/runs/object)"
- type: object
properties:
event:
type: string
enum: ["thread.run.completed"]
data:
$ref: "#/components/schemas/RunObject"
required:
- event
- data
description: Occurs when a [run](/docs/api-reference/runs/object) is completed.
x-oaiMeta:
dataDescription: "`data` is a [run](/docs/api-reference/runs/object)"
- type: object
properties:
event:
type: string
enum: ["thread.run.failed"]
data:
$ref: "#/components/schemas/RunObject"
required:
- event
- data
description: Occurs when a [run](/docs/api-reference/runs/object) fails.
x-oaiMeta:
dataDescription: "`data` is a [run](/docs/api-reference/runs/object)"
- type: object
properties:
event:
type: string
enum: ["thread.run.cancelling"]
data:
$ref: "#/components/schemas/RunObject"
required:
- event
- data
description: Occurs when a [run](/docs/api-reference/runs/object) moves to a `cancelling` status.
x-oaiMeta:
dataDescription: "`data` is a [run](/docs/api-reference/runs/object)"
- type: object
properties:
event:
type: string
enum: ["thread.run.cancelled"]
data:
$ref: "#/components/schemas/RunObject"
required:
- event
- data
description: Occurs when a [run](/docs/api-reference/runs/object) is cancelled.
x-oaiMeta:
dataDescription: "`data` is a [run](/docs/api-reference/runs/object)"
- type: object
properties:
event:
type: string
enum: ["thread.run.expired"]
data:
$ref: "#/components/schemas/RunObject"
required:
- event
- data
description: Occurs when a [run](/docs/api-reference/runs/object) expires.
x-oaiMeta:
dataDescription: "`data` is a [run](/docs/api-reference/runs/object)"
RunStepStreamEvent:
oneOf:
- type: object
properties:
event:
type: string
enum: ["thread.run.step.created"]
data:
$ref: "#/components/schemas/RunStepObject"
required:
- event
- data
description: Occurs when a [run step](/docs/api-reference/runs/step-object) is created.
x-oaiMeta:
dataDescription: "`data` is a [run step](/docs/api-reference/runs/step-object)"
- type: object
properties:
event:
type: string
enum: ["thread.run.step.in_progress"]
data:
$ref: "#/components/schemas/RunStepObject"
required:
- event
- data
description: Occurs when a [run step](/docs/api-reference/runs/step-object) moves to an `in_progress` state.
x-oaiMeta:
dataDescription: "`data` is a [run step](/docs/api-reference/runs/step-object)"
- type: object
properties:
event:
type: string
enum: ["thread.run.step.delta"]
data:
$ref: "#/components/schemas/RunStepDeltaObject"
required:
- event
- data
description: Occurs when parts of a [run step](/docs/api-reference/runs/step-object) are being streamed.
x-oaiMeta:
dataDescription: "`data` is a [run step delta](/docs/api-reference/assistants-streaming/run-step-delta-object)"
- type: object
properties:
event:
type: string
enum: ["thread.run.step.completed"]
data:
$ref: "#/components/schemas/RunStepObject"
required:
- event
- data
description: Occurs when a [run step](/docs/api-reference/runs/step-object) is completed.
x-oaiMeta:
dataDescription: "`data` is a [run step](/docs/api-reference/runs/step-object)"
- type: object
properties:
event:
type: string
enum: ["thread.run.step.failed"]
data:
$ref: "#/components/schemas/RunStepObject"
required:
- event
- data
description: Occurs when a [run step](/docs/api-reference/runs/step-object) fails.
x-oaiMeta:
dataDescription: "`data` is a [run step](/docs/api-reference/runs/step-object)"
- type: object
properties:
event:
type: string
enum: ["thread.run.step.cancelled"]
data:
$ref: "#/components/schemas/RunStepObject"
required:
- event
- data
description: Occurs when a [run step](/docs/api-reference/runs/step-object) is cancelled.
x-oaiMeta:
dataDescription: "`data` is a [run step](/docs/api-reference/runs/step-object)"
- type: object
properties:
event:
type: string
enum: ["thread.run.step.expired"]
data:
$ref: "#/components/schemas/RunStepObject"
required:
- event
- data
description: Occurs when a [run step](/docs/api-reference/runs/step-object) expires.
x-oaiMeta:
dataDescription: "`data` is a [run step](/docs/api-reference/runs/step-object)"
MessageStreamEvent:
oneOf:
- type: object
properties:
event:
type: string
enum: ["thread.message.created"]
data:
$ref: "#/components/schemas/MessageObject"
required:
- event
- data
description: Occurs when a [message](/docs/api-reference/messages/object) is created.
x-oaiMeta:
dataDescription: "`data` is a [message](/docs/api-reference/messages/object)"
- type: object
properties:
event:
type: string
enum: ["thread.message.in_progress"]
data:
$ref: "#/components/schemas/MessageObject"
required:
- event
- data
description: Occurs when a [message](/docs/api-reference/messages/object) moves to an `in_progress` state.
x-oaiMeta:
dataDescription: "`data` is a [message](/docs/api-reference/messages/object)"
- type: object
properties:
event:
type: string
enum: ["thread.message.delta"]
data:
$ref: "#/components/schemas/MessageDeltaObject"
required:
- event
- data
description: Occurs when parts of a [Message](/docs/api-reference/messages/object) are being streamed.
x-oaiMeta:
dataDescription: "`data` is a [message delta](/docs/api-reference/assistants-streaming/message-delta-object)"
- type: object
properties:
event:
type: string
enum: ["thread.message.completed"]
data:
$ref: "#/components/schemas/MessageObject"
required:
- event
- data
description: Occurs when a [message](/docs/api-reference/messages/object) is completed.
x-oaiMeta:
dataDescription: "`data` is a [message](/docs/api-reference/messages/object)"
- type: object
properties:
event:
type: string
enum: ["thread.message.incomplete"]
data:
$ref: "#/components/schemas/MessageObject"
required:
- event
- data
description: Occurs when a [message](/docs/api-reference/messages/object) ends before it is completed.
x-oaiMeta:
dataDescription: "`data` is a [message](/docs/api-reference/messages/object)"
ErrorEvent:
type: object
properties:
event:
type: string
enum: ["error"]
data:
$ref: "#/components/schemas/Error"
required:
- event
- data
description: Occurs when an [error](/docs/guides/error-codes/api-errors) occurs. This can happen due to an internal server error or a timeout.
x-oaiMeta:
dataDescription: "`data` is an [error](/docs/guides/error-codes/api-errors)"
DoneEvent:
type: object
properties:
event:
type: string
enum: ["done"]
data:
type: string
enum: ["[DONE]"]
required:
- event
- data
description: Occurs when a stream ends.
x-oaiMeta:
dataDescription: "`data` is `[DONE]`"
Batch:
type: object
properties:
id:
type: string
object:
type: string
enum: [batch]
description: The object type, which is always `batch`.
endpoint:
type: string
description: The OpenAI API endpoint used by the batch.
errors:
type: object
properties:
object:
type: string
description: The object type, which is always `list`.
data:
type: array
items:
type: object
properties:
code:
type: string
description: An error code identifying the error type.
message:
type: string
description: A human-readable message providing more details about the error.
param:
type: string
description: The name of the parameter that caused the error, if applicable.
nullable: true
line:
type: integer
description: The line number of the input file where the error occurred, if applicable.
nullable: true
input_file_id:
type: string
description: The ID of the input file for the batch.
completion_window:
type: string
description: The time frame within which the batch should be processed.
status:
type: string
description: The current status of the batch.
enum:
- validating
- failed
- in_progress
- finalizing
- completed
- expired
- cancelling
- cancelled
output_file_id:
type: string
description: The ID of the file containing the outputs of successfully executed requests.
error_file_id:
type: string
description: The ID of the file containing the outputs of requests with errors.
created_at:
type: integer
description: The Unix timestamp (in seconds) for when the batch was created.
in_progress_at:
type: integer
description: The Unix timestamp (in seconds) for when the batch started processing.
expires_at:
type: integer
description: The Unix timestamp (in seconds) for when the batch will expire.
finalizing_at:
type: integer
description: The Unix timestamp (in seconds) for when the batch started finalizing.
completed_at:
type: integer
description: The Unix timestamp (in seconds) for when the batch was completed.
failed_at:
type: integer
description: The Unix timestamp (in seconds) for when the batch failed.
expired_at:
type: integer
description: The Unix timestamp (in seconds) for when the batch expired.
cancelling_at:
type: integer
description: The Unix timestamp (in seconds) for when the batch started cancelling.
cancelled_at:
type: integer
description: The Unix timestamp (in seconds) for when the batch was cancelled.
request_counts:
type: object
properties:
total:
type: integer
description: Total number of requests in the batch.
completed:
type: integer
description: Number of requests that have been completed successfully.
failed:
type: integer
description: Number of requests that have failed.
required:
- total
- completed
- failed
description: The request counts for different statuses within the batch.
metadata:
description: *metadata_description
type: object
x-oaiTypeLabel: map
nullable: true
required:
- id
- object
- endpoint
- input_file_id
- completion_window
- status
- created_at
x-oaiMeta:
name: The batch object
example: *batch_object
BatchRequestInput:
type: object
description: The per-line object of the batch input file
properties:
custom_id:
type: string
description: A developer-provided per-request id that will be used to match outputs to inputs. Must be unique for each request in a batch.
method:
type: string
enum: ["POST"]
description: The HTTP method to be used for the request. Currently only `POST` is supported.
url:
type: string
description: The OpenAI API relative URL to be used for the request. Currently `/v1/chat/completions` and `/v1/embeddings` are supported.
x-oaiMeta:
name: The request input object
example: |
{"custom_id": "request-1", "method": "POST", "url": "/v1/chat/completions", "body": {"model": "gpt-3.5-turbo", "messages": [{"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "What is 2+2?"}]}}
BatchRequestOutput:
type: object
description: The per-line object of the batch output and error files
properties:
id:
type: string
custom_id:
type: string
description: A developer-provided per-request id that will be used to match outputs to inputs.
response:
type: object
nullable: true
properties:
status_code:
type: integer
description: The HTTP status code of the response
request_id:
type: string
description: An unique identifier for the OpenAI API request. Please include this request ID when contacting support.
body:
type: object
x-oaiTypeLabel: map
description: The JSON body of the response
error:
type: object
nullable: true
description: For requests that failed with a non-HTTP error, this will contain more information on the cause of the failure.
properties:
code:
type: string
description: A machine-readable error code.
message:
type: string
description: A human-readable error message.
x-oaiMeta:
name: The request output object
example: |
{"id": "batch_req_wnaDys", "custom_id": "request-2", "response": {"status_code": 200, "request_id": "req_c187b3", "body": {"id": "chatcmpl-9758Iw", "object": "chat.completion", "created": 1711475054, "model": "gpt-3.5-turbo", "choices": [{"index": 0, "message": {"role": "assistant", "content": "2 + 2 equals 4."}, "finish_reason": "stop"}], "usage": {"prompt_tokens": 24, "completion_tokens": 15, "total_tokens": 39}, "system_fingerprint": null}}, "error": null}
ListBatchesResponse:
type: object
properties:
data:
type: array
items:
$ref: "#/components/schemas/Batch"
first_id:
type: string
example: "batch_abc123"
last_id:
type: string
example: "batch_abc456"
has_more:
type: boolean
object:
type: string
enum: [list]
required:
- object
- data
- has_more
security:
- ApiKeyAuth: []
x-oaiMeta:
navigationGroups:
- id: endpoints
title: Endpoints
- id: assistants
title: Assistants
- id: legacy
title: Legacy
groups:
# > General Notes
# The `groups` section is used to generate the API reference pages and navigation, in the same
# order listed below. Additionally, each `group` can have a list of `sections`, each of which
# will become a navigation subroute and subsection under the group. Each section has:
# - `type`: Currently, either an `endpoint` or `object`, depending on how the section needs to
# be rendered
# - `key`: The reference key that can be used to lookup the section definition
# - `path`: The path (url) of the section, which is used to generate the navigation link.
#
# > The `object` sections maps to a schema component and the following fields are read for rendering
# - `x-oaiMeta.name`: The name of the object, which will become the section title
# - `x-oaiMeta.example`: The example object, which will be used to generate the example sample (always JSON)
# - `description`: The description of the object, which will be used to generate the section description
#
# > The `endpoint` section maps to an operation path and the following fields are read for rendering:
# - `x-oaiMeta.name`: The name of the endpoint, which will become the section title
# - `x-oaiMeta.examples`: The endpoint examples, which can be an object (meaning a single variation, most
# endpoints, or an array of objects, meaning multiple variations, e.g. the
# chat completion and completion endpoints, with streamed and non-streamed examples.
# - `x-oaiMeta.returns`: text describing what the endpoint returns.
# - `summary`: The summary of the endpoint, which will be used to generate the section description
- id: audio
title: Audio
description: |
Learn how to turn audio into text or text into audio.
Related guide: [Speech to text](/docs/guides/speech-to-text)
navigationGroup: endpoints
sections:
- type: endpoint
key: createSpeech
path: createSpeech
- type: endpoint
key: createTranscription
path: createTranscription
- type: endpoint
key: createTranslation
path: createTranslation
- type: object
key: CreateTranscriptionResponseJson
path: json-object
- type: object
key: CreateTranscriptionResponseVerboseJson
path: verbose-json-object
- id: chat
title: Chat
description: |
Given a list of messages comprising a conversation, the model will return a response.
Related guide: [Chat Completions](/docs/guides/text-generation)
navigationGroup: endpoints
sections:
- type: endpoint
key: createChatCompletion
path: create
- type: object
key: CreateChatCompletionResponse
path: object
- type: object
key: CreateChatCompletionStreamResponse
path: streaming
- id: embeddings
title: Embeddings
description: |
Get a vector representation of a given input that can be easily consumed by machine learning models and algorithms.
Related guide: [Embeddings](/docs/guides/embeddings)
navigationGroup: endpoints
sections:
- type: endpoint
key: createEmbedding
path: create
- type: object
key: Embedding
path: object
- id: fine-tuning
title: Fine-tuning
description: |
Manage fine-tuning jobs to tailor a model to your specific training data.
Related guide: [Fine-tune models](/docs/guides/fine-tuning)
navigationGroup: endpoints
sections:
- type: endpoint
key: createFineTuningJob
path: create
- type: endpoint
key: listPaginatedFineTuningJobs
path: list
- type: endpoint
key: listFineTuningEvents
path: list-events
- type: endpoint
key: listFineTuningJobCheckpoints
path: list-checkpoints
- type: endpoint
key: retrieveFineTuningJob
path: retrieve
- type: endpoint
key: cancelFineTuningJob
path: cancel
- type: object
key: FineTuningJob
path: object
- type: object
key: FineTuningJobEvent
path: event-object
- type: object
key: FineTuningJobCheckpoint
path: checkpoint-object
- id: batch
title: Batch
description: |
Create large batches of API requests for asynchronous processing. The Batch API returns completions within 24 hours for a 50% discount.
Related guide: [Batch](/docs/guides/batch)
navigationGroup: endpoints
sections:
- type: endpoint
key: createBatch
path: create
- type: endpoint
key: retrieveBatch
path: retrieve
- type: endpoint
key: cancelBatch
path: cancel
- type: endpoint
key: listBatches
path: list
- type: object
key: Batch
path: object
- type: object
key: BatchRequestInput
path: requestInput
- type: object
key: BatchRequestOutput
path: requestOutput
- id: files
title: Files
description: |
Files are used to upload documents that can be used with features like [Assistants](/docs/api-reference/assistants) and [Fine-tuning](/docs/api-reference/fine-tuning).
navigationGroup: endpoints
sections:
- type: endpoint
key: createFile
path: create
- type: endpoint
key: listFiles
path: list
- type: endpoint
key: retrieveFile
path: retrieve
- type: endpoint
key: deleteFile
path: delete
- type: endpoint
key: downloadFile
path: retrieve-contents
- type: object
key: OpenAIFile
path: object
- id: images
title: Images
description: |
Given a prompt and/or an input image, the model will generate a new image.
Related guide: [Image generation](/docs/guides/images)
navigationGroup: endpoints
sections:
- type: endpoint
key: createImage
path: create
- type: endpoint
key: createImageEdit
path: createEdit
- type: endpoint
key: createImageVariation
path: createVariation
- type: object
key: Image
path: object
- id: models
title: Models
description: |
List and describe the various models available in the API. You can refer to the [Models](/docs/models) documentation to understand what models are available and the differences between them.
navigationGroup: endpoints
sections:
- type: endpoint
key: listModels
path: list
- type: endpoint
key: retrieveModel
path: retrieve
- type: endpoint
key: deleteModel
path: delete
- type: object
key: Model
path: object
- id: moderations
title: Moderations
description: |
Given some input text, outputs if the model classifies it as potentially harmful across several categories.
Related guide: [Moderations](/docs/guides/moderation)
navigationGroup: endpoints
sections:
- type: endpoint
key: createModeration
path: create
- type: object
key: CreateModerationResponse
path: object
- id: assistants
title: Assistants
beta: true
description: |
Build assistants that can call models and use tools to perform tasks.
[Get started with the Assistants API](/docs/assistants)
navigationGroup: assistants
sections:
- type: endpoint
key: createAssistant
path: createAssistant
- type: endpoint
key: listAssistants
path: listAssistants
- type: endpoint
key: getAssistant
path: getAssistant
- type: endpoint
key: modifyAssistant
path: modifyAssistant
- type: endpoint
key: deleteAssistant
path: deleteAssistant
- type: object
key: AssistantObject
path: object
- id: threads
title: Threads
beta: true
description: |
Create threads that assistants can interact with.
Related guide: [Assistants](/docs/assistants/overview)
navigationGroup: assistants
sections:
- type: endpoint
key: createThread
path: createThread
- type: endpoint
key: getThread
path: getThread
- type: endpoint
key: modifyThread
path: modifyThread
- type: endpoint
key: deleteThread
path: deleteThread
- type: object
key: ThreadObject
path: object
- id: messages
title: Messages
beta: true
description: |
Create messages within threads
Related guide: [Assistants](/docs/assistants/overview)
navigationGroup: assistants
sections:
- type: endpoint
key: createMessage
path: createMessage
- type: endpoint
key: listMessages
path: listMessages
- type: endpoint
key: getMessage
path: getMessage
- type: endpoint
key: modifyMessage
path: modifyMessage
- type: endpoint
key: deleteMessage
path: deleteMessage
- type: object
key: MessageObject
path: object
- id: runs
title: Runs
beta: true
description: |
Represents an execution run on a thread.
Related guide: [Assistants](/docs/assistants/overview)
navigationGroup: assistants
sections:
- type: endpoint
key: createRun
path: createRun
- type: endpoint
key: createThreadAndRun
path: createThreadAndRun
- type: endpoint
key: listRuns
path: listRuns
- type: endpoint
key: getRun
path: getRun
- type: endpoint
key: modifyRun
path: modifyRun
- type: endpoint
key: submitToolOuputsToRun
path: submitToolOutputs
- type: endpoint
key: cancelRun
path: cancelRun
- type: object
key: RunObject
path: object
- id: run-steps
title: Run Steps
beta: true
description: |
Represents the steps (model and tool calls) taken during the run.
Related guide: [Assistants](/docs/assistants/overview)
navigationGroup: assistants
sections:
- type: endpoint
key: listRunSteps
path: listRunSteps
- type: endpoint
key: getRunStep
path: getRunStep
- type: object
key: RunStepObject
path: step-object
- id: vector-stores
title: Vector Stores
beta: true
description: |
Vector stores are used to store files for use by the `file_search` tool.
Related guide: [File Search](/docs/assistants/tools/file-search)
navigationGroup: assistants
sections:
- type: endpoint
key: createVectorStore
path: create
- type: endpoint
key: listVectorStores
path: list
- type: endpoint
key: getVectorStore
path: retrieve
- type: endpoint
key: modifyVectorStore
path: modify
- type: endpoint
key: deleteVectorStore
path: delete
- type: object
key: VectorStoreObject
path: object
- id: vector-stores-files
title: Vector Store Files
beta: true
description: |
Vector store files represent files inside a vector store.
Related guide: [File Search](/docs/assistants/tools/file-search)
navigationGroup: assistants
sections:
- type: endpoint
key: createVectorStoreFile
path: createFile
- type: endpoint
key: listVectorStoreFiles
path: listFiles
- type: endpoint
key: getVectorStoreFile
path: getFile
- type: endpoint
key: deleteVectorStoreFile
path: deleteFile
- type: object
key: VectorStoreFileObject
path: file-object
- id: vector-stores-file-batches
title: Vector Store File Batches
beta: true
description: |
Vector store file batches represent operations to add multiple files to a vector store.
Related guide: [File Search](/docs/assistants/tools/file-search)
navigationGroup: assistants
sections:
- type: endpoint
key: createVectorStoreFileBatch
path: createBatch
- type: endpoint
key: getVectorStoreFileBatch
path: getBatch
- type: endpoint
key: cancelVectorStoreFileBatch
path: cancelBatch
- type: endpoint
key: listFilesInVectorStoreBatch
path: listBatchFiles
- type: object
key: VectorStoreFileBatchObject
path: batch-object
- id: assistants-streaming
title: Streaming
beta: true
description: |
Stream the result of executing a Run or resuming a Run after submitting tool outputs.
You can stream events from the [Create Thread and Run](/docs/api-reference/runs/createThreadAndRun),
[Create Run](/docs/api-reference/runs/createRun), and [Submit Tool Outputs](/docs/api-reference/runs/submitToolOutputs)
endpoints by passing `"stream": true`. The response will be a [Server-Sent events](https://html.spec.whatwg.org/multipage/server-sent-events.html#server-sent-events) stream.
Our Node and Python SDKs provide helpful utilities to make streaming easy. Reference the
[Assistants API quickstart](/docs/assistants/overview) to learn more.
navigationGroup: assistants
sections:
- type: object
key: MessageDeltaObject
path: message-delta-object
- type: object
key: RunStepDeltaObject
path: run-step-delta-object
- type: object
key: AssistantStreamEvent
path: events
- id: completions
title: Completions
legacy: true
navigationGroup: legacy
description: |
Given a prompt, the model will return one or more predicted completions along with the probabilities of alternative tokens at each position. Most developer should use our [Chat Completions API](/docs/guides/text-generation/text-generation-models) to leverage our best and newest models.
sections:
- type: endpoint
key: createCompletion
path: create
- type: object
key: CreateCompletionResponse
path: object