"""Code generated by Speakeasy (https://speakeasy.com). DO NOT EDIT.""" from datetime import datetime from enum import Enum from email.message import Message from functools import partial import os from typing import Any, Callable, Dict, List, Optional, Tuple, TypeVar, Union, cast from httpx import Response from pydantic import BaseModel from pydantic.fields import FieldInfo from ..types.basemodel import Unset from .serializers import marshal_json from .metadata import ParamMetadata, find_field_metadata def match_content_type(content_type: str, pattern: str) -> bool: if pattern in (content_type, "*", "*/*"): return True msg = Message() msg["content-type"] = content_type media_type = msg.get_content_type() if media_type == pattern: return True parts = media_type.split("/") if len(parts) == 2: if pattern in (f"{parts[0]}/*", f"*/{parts[1]}"): return True return False def match_status_codes(status_codes: List[str], status_code: int) -> bool: if "default" in status_codes: return True for code in status_codes: if code == str(status_code): return True if code.endswith("XX") and code.startswith(str(status_code)[:1]): return True return False T = TypeVar("T") def cast_partial(typ): return partial(cast, typ) def get_global_from_env( value: Optional[T], env_key: str, type_cast: Callable[[str], T] ) -> Optional[T]: if value is not None: return value env_value = os.getenv(env_key) if env_value is not None: try: return type_cast(env_value) except ValueError: pass return None def match_response( response: Response, code: Union[str, List[str]], content_type: str ) -> bool: codes = code if isinstance(code, list) else [code] return match_status_codes(codes, response.status_code) and match_content_type( response.headers.get("content-type", "application/octet-stream"), content_type ) def _populate_from_globals( param_name: str, value: Any, param_metadata_type: type, gbls: Any ) -> Tuple[Any, bool]: if gbls is None: return value, False if not isinstance(gbls, BaseModel): raise TypeError("globals must be a pydantic model") global_fields: Dict[str, FieldInfo] = gbls.__class__.model_fields found = False for name in global_fields: field = global_fields[name] if name is not param_name: continue found = True if value is not None: return value, True global_value = getattr(gbls, name) param_metadata = find_field_metadata(field, param_metadata_type) if param_metadata is None: return value, True return global_value, True return value, found def _val_to_string(val) -> str: if isinstance(val, bool): return str(val).lower() if isinstance(val, datetime): return str(val.isoformat().replace("+00:00", "Z")) if isinstance(val, Enum): return str(val.value) return str(val) def _get_serialized_params( metadata: ParamMetadata, field_name: str, obj: Any, typ: type ) -> Dict[str, str]: params: Dict[str, str] = {} serialization = metadata.serialization if serialization == "json": params[field_name] = marshal_json(obj, typ) return params def _is_set(value: Any) -> bool: return value is not None and not isinstance(value, Unset)