Finalized update to existing assets, wrote more on hexadecimal, etc
@@ -1,191 +0,0 @@
|
|||||||
---
|
|
||||||
{
|
|
||||||
title: "How Binary and Hexadecimal Work: An introduction to non-decimal number systems",
|
|
||||||
description: "Learn how to convert decimal to binary and hexadecimal, how CSS colors are calculated, and how your computer interprets letters into binary",
|
|
||||||
published: "2019-11-07T05:12:03.284Z",
|
|
||||||
authors: ["crutchcorn"],
|
|
||||||
tags: ["binary", "hexadecimal"],
|
|
||||||
attached: [],
|
|
||||||
license: "cc-by-nc-sa-4",
|
|
||||||
}
|
|
||||||
---
|
|
||||||
|
|
||||||
Computers - on a very low level - are built upon binary (ones and zeros). Think about that - all of the text you're reading on your screen started life as either a one or a zero in some form. That's incredible! How can it turn something so simple into a sprawling sheet of characters that you can read on your device? Let's find out together!
|
|
||||||
|
|
||||||
## Decimal
|
|
||||||
|
|
||||||
When you or I count, we typically use 10 numbers in some variation of combination to do so: `0`, `1`, `2`, `3`, `4`, `5`, `6`, `7`, `8`, and `9`.
|
|
||||||
|
|
||||||
When you count to `10`, you're really using a combination of `1` and `0` in order to construct a larger number that we cognizantly recognize. The number `10` persists in our minds even when we have it written out; **ten**.
|
|
||||||
|
|
||||||

|
|
||||||
|
|
||||||
Knowing that we can separate the number from our thoughts allows us to categorize the number in a further manor, breaking it down into smaller groupings mentally. For example, if we take the number `34`, for example, we can break it down into three groups: the _ones_, the _tens_, and the _hundreds_.
|
|
||||||
|
|
||||||

|
|
||||||
|
|
||||||
For the number `34`, we break it down into: `0` _hundreds_, `3` _tens_, and `4` _ones_. We can then multiply the higher number with the lower number (the column they're on) to get the numbers **`30`** (`3` _tens_) and **`4`** (`4` _ones_). Finally, we add the sum of them together to make the number we all know and love: **`34`**.
|
|
||||||
|
|
||||||
This breakdown showcases a limitation with having 10 symbols to represent numbers; with only a single column, the highest number we can represent is _`9`_.
|
|
||||||
Remember that the number **`10`** is a combination of **`0`** and **`1`**? That's due to this limitation. Likewise - with two columns - the highest number we can represent is _`99`_
|
|
||||||
|
|
||||||
## Binary
|
|
||||||
|
|
||||||
Now this may seem rather simplistic, but it's important to demonstrate this to understand binary. Our numerical system is known as the _base 10 system_. **Called such because there are 10 symbols used to construct all other numbers** (once again, that's: `0`, `1`, `2`, `3`, `4`, `5`, `6`, `7`, `8`, and `9`).
|
|
||||||
Binary, on the other hand, is _base two_. **This means that there are only two symbols that exist in this numerical system.**
|
|
||||||
|
|
||||||
> For the latin enthusiasts, binary comes from "binarius" meaning "two together". _Deca_, meaning 10, is where "decimal" comes from
|
|
||||||
|
|
||||||
Instead of using numbers, which can get very confusing very quickly while learning for the first time, let's use **`X`**s and **`O`**s as our two symbols for our first few examples. _An **`X`** represents if a number is present and we should add it to the final sum_, _an **`O`** means that the number is not present and we should not add it_.
|
|
||||||
Take the following example:
|
|
||||||
|
|
||||||

|
|
||||||
|
|
||||||
In this example, both `1` and `2` are present, so we add them together to make **`3`**. You'll see that since we can only have a value present or not present — because we only have two symbols in binary — this conversion has less steps than using decimal. For example, if you only wanted the number two, you could simply mark the `1` as "not present" using the **`O`**
|
|
||||||
|
|
||||||

|
|
||||||
|
|
||||||
You can even replace the two symbols with `1` and `0` to get the actual binary number of `10` in order to represent `2`
|
|
||||||
|
|
||||||

|
|
||||||
|
|
||||||
So how does this play out when trying to represent the number **`50`** in binary?
|
|
||||||
|
|
||||||

|
|
||||||
|
|
||||||
As you can see, we create columns that are exponents of the number `2` for similar reasons as exponents of `10`; You can't represent `4`, `8`, `16`, or `32` without creating a new column otherwise.
|
|
||||||
|
|
||||||
> Remember, in this system a number can only be present or not, there is no _`2`_. Because of this, without the **`4`** column, there can only be a `1` and a `2`, which makes up **`3`**. Continuing on with this pattern: without an **`8`** column, you can only have a `4`, `2`, and `1` which would yeild you **`7`**.
|
|
||||||
|
|
||||||
Once each of these exponents is laid out, we can start adding 1s where we have the minimum amount of value. EG:
|
|
||||||
Is `64` less than or equal to `50`? No. That's a **`0`**
|
|
||||||
Is `32 <= 50`? Yes, therefore that's a **`1`**
|
|
||||||
`50 - 32 = 18`
|
|
||||||
Moving down the list, is `16 <= 18`? Yes, that's a **`1`**
|
|
||||||
`18 - 16 = 2`
|
|
||||||
Is `8 <= 2`? No, that's a **`0`**
|
|
||||||
`4 <= 2`? No, that's a **`0`** as well
|
|
||||||
`2 <= 2`? Yes, that's a **`1`**
|
|
||||||
`2 - 2` is **`0`**. That means every number afterwards (in this case only `1` is left) is not present, therefore is a **`0`**.
|
|
||||||
|
|
||||||
Add up all those numbers:
|
|
||||||
|Column|Value|
|
|
||||||
|--|--|
|
|
||||||
|`64`| **`0`**|
|
|
||||||
|`32`| **`1`**|
|
|
||||||
|`16`| **`1`**|
|
|
||||||
|`8`| **`0`**|
|
|
||||||
|`4`| **`0`**|
|
|
||||||
|`2`| **`1`**|
|
|
||||||
|`1`| **`0`**|
|
|
||||||
|
|
||||||
And voilà, you have the binary representation of `50`: **`0110010`**
|
|
||||||
|
|
||||||
> Author's note:
|
|
||||||
>
|
|
||||||
> While there are plenty of ways to find the binary representation of a decimal number, this example uses a "greedy" alogrithm. I find this algorithm to flow the best with learning of the binary number system, but it's not the only way (or even the best way, oftentimes).
|
|
||||||
|
|
||||||
## Hexadecimal
|
|
||||||
|
|
||||||
But binary isn't the only non-deciamal system. You're able to reflect any numerical base so long as you have the correct number of symbols for that system. Let's look at another example of a non-decimal system: _Hexadecimal_.
|
|
||||||
|
|
||||||
Hexadecimal is the base 16 number system.
|
|
||||||
|
|
||||||
> _Hexa_ meaning "six" in Latin, _deca_ meaning "ten", combining to mean "sixteen".
|
|
||||||
|
|
||||||
Now you may wonder how you can count to 16 in a single column when we only use 10 numbers. The answer, to many developers, is to fill the remaining last 6 with other symbols: letters.
|
|
||||||
|
|
||||||
`0`, `1`, `2`, `3`, `4`, `5`, `6`, `7`, `8`, `9`, `A`, `B`, `C`, `D`, `E`, `F`
|
|
||||||
|
|
||||||
These are the symbols that makeup the hexadecimal numerical systems for many devs. _`A`_, in this case, represents the number **`10`**. _`F`_ being the number **`15`**. In this numerical system, there are the _sixteens_, the _two-hundred fifty sixs_ (gathered by multiplying 16 by itself — 16 ^ 2), and other exponents of 16.
|
|
||||||
|
|
||||||
Given this information, how would we represent the number **`50`**?
|
|
||||||
|
|
||||||

|
|
||||||
|
|
||||||
Assuming we have a _ones_ column, a _sixteens_ column, and a _two-hundred fifty sixths_, let's do a similar method of calulating the number as we did with binary.
|
|
||||||
|
|
||||||
Is `256` less than or equal to `50`? No. That's a **`0`**
|
|
||||||
Is `16 <= 50`? Yes. So we know it's _at least_ _`1`_.
|
|
||||||
|
|
||||||
Now, how many times can you put `16` in `50`?
|
|
||||||
|
|
||||||
`16 * 2 = 32` and `32 <= 50`, so it's _at least_ _`2`_
|
|
||||||
|
|
||||||
`16 * 3 = 48` and `48 <= 50` so it's _at least_ _`3`_
|
|
||||||
|
|
||||||
`16 * 4 = 64`. However, `64 > 50`, therefor the _sixteenth_ place cannot be _`4`_, therefore it must be **`3`**
|
|
||||||
|
|
||||||
So now that we know the most we can have in the _sixteenth_ place, we can subtract the sum (`48`) from our result (`50`)
|
|
||||||
|
|
||||||
`50 - 48 = 2`
|
|
||||||
|
|
||||||
Now onto the _ones_ place:
|
|
||||||
|
|
||||||
How many _ones_ can fit into _`2`_?
|
|
||||||
|
|
||||||
`1 * 1 = 1` and `1 <= 2`, so it's _at least_ _`1`_
|
|
||||||
|
|
||||||
`1 * 2 = 2` and `2 <= 2` and because these number equal, we know that there must be **`2`** _twos_.
|
|
||||||
|
|
||||||
Now if we add up these numbers:
|
|
||||||
|
|
||||||
| Column | Value |
|
|
||||||
| ------ | ------- |
|
|
||||||
| `256` | **`0`** |
|
|
||||||
| `16` | **`3`** |
|
|
||||||
| `1` | **`2`** |
|
|
||||||
|
|
||||||
### Why `256`?
|
|
||||||
|
|
||||||
## Applications
|
|
||||||
|
|
||||||
### CSS Colors
|
|
||||||
|
|
||||||
Funnily enough, if you've used a "HEX" value in HTML and CSS, you may already be loosely familiar with a similar scenario to what we walked through with the hexadecimal section.
|
|
||||||
|
|
||||||
For example, take the color `#F33BC6` (a pinkish color). This color is a combination of `3` two-column hexadecimal numbers back-to-back. These numbers are:
|
|
||||||
|
|
||||||
`F3`, `3B`, `C6`
|
|
||||||
|
|
||||||
_They reflect the amount of red, green, and blue (respective) in said color._ Because these numbers are two-column hexadecimal numbers, _the highest a number can be to reflect one of these colors is `255`_ (which is **FF** in hexadecimal).
|
|
||||||
|
|
||||||
> If you're unfamiliar with how red, green and blue can combine to make the colors we're familiar with (such as yellow, orange, purple, and much more), it might be worth taking a look at some of the color theory behind it. [You can find resources on the topic on Wikipedia](https://en.wikipedia.org/wiki/RGB_color_model) and elsewhere
|
|
||||||
|
|
||||||
These numbers, in decimal, are as follows:
|
|
||||||
|
|
||||||
| HEX | Decimal |
|
|
||||||
| ---- | ------- |
|
|
||||||
| `F3` | `243` |
|
|
||||||
| `3B` | `59` |
|
|
||||||
| `C6` | `196` |
|
|
||||||
|
|
||||||
And construct the amount of `Red`, `Green`, and `Blue` used to construct that color
|
|
||||||
|
|
||||||
| Represents | HEX | Decimal |
|
|
||||||
| ---------- | ---- | ------- |
|
|
||||||
| Red | `F3` | `243` |
|
|
||||||
| Green | `3B` | `59` |
|
|
||||||
| Blue | `C6` | `196` |
|
|
||||||
|
|
||||||
Even without seeing a visual representation, you can tell that this color likely has a purple hue - since it has a high percentage of red and blue.
|
|
||||||
|
|
||||||

|
|
||||||
|
|
||||||
### Text Encoding
|
|
||||||
|
|
||||||
While hexadecimal has much more immediately noticable application with colors, we started this post off with a question: "How does your computer know what letters to display on screen from only binary?"
|
|
||||||
|
|
||||||
The answer to that question is quite complex, but let's answer it in a very simple manor (despite missing a lot of puzzle pieces in a very ["draw the owl"](https://knowyourmeme.com/memes/how-to-draw-an-owl) kind of way).
|
|
||||||
|
|
||||||
Let's take a real way that computers used to (and still ocationally do) represent letters internally: [ASCII](https://en.wikipedia.org/wiki/ASCII). ASCII is an older standard for representing letters as different numbers inside your computer. Take the following (simplified) chart:
|
|
||||||
|
|
||||||

|
|
||||||
|
|
||||||
When the user types _"This"_, what the computer interprets (using ASCII) is `84`, `104`, `105`, and `115` for `T`, `h`, `i`, and `s` respectively.
|
|
||||||
|
|
||||||
> You might be wondering "Why is there a bunch of missing numbers"?
|
|
||||||
>
|
|
||||||
> I've removed them to keep the examples simple, but many of them are for symbols (EG: `#`, `/`, and more) and some of them are for internal key commands that were used for terminal computing long ago that your computer now does without you noticing
|
|
||||||
>
|
|
||||||
> It's also worth mentioning that ASCII, while there are more characters than what's presented here, was eventually replaced in various applications by [Unicode](https://en.wikipedia.org/wiki/Unicode) and other text encoding formats as it lacks various functionality we expect of our machines today, such as emoji and non-latin symbols (like Kanji).
|
|
||||||
|
Before Width: | Height: | Size: 33 KiB |
@@ -1,115 +0,0 @@
|
|||||||
<svg width="139" height="193" viewBox="0 0 139 193" fill="none" xmlns="http://www.w3.org/2000/svg">
|
|
||||||
<path d="M35.1426 23.2617C35.1426 24.9141 34.9492 26.373 34.5625 27.6387C34.1875 28.8926 33.6426 29.9473 32.9277 30.8027C32.2129 31.6465 31.3398 32.2852 30.3086 32.7188C29.2773 33.1523 28.1172 33.3691 26.8281 33.3691C25.5508 33.3691 24.3965 33.1523 23.3652 32.7188C22.334 32.2852 21.4551 31.6465 20.7285 30.8027C20.0137 29.9473 19.457 28.8926 19.0586 27.6387C18.6719 26.373 18.4785 24.9141 18.4785 23.2617V17.1445C18.4785 15.4922 18.6719 14.0391 19.0586 12.7852C19.4453 11.5195 19.9961 10.4648 20.7109 9.62109C21.4375 8.76562 22.3105 8.12109 23.3301 7.6875C24.3613 7.25391 25.5156 7.03711 26.793 7.03711C28.082 7.03711 29.2422 7.25391 30.2734 7.6875C31.3047 8.12109 32.1777 8.76562 32.8926 9.62109C33.6191 10.4648 34.1758 11.5195 34.5625 12.7852C34.9492 14.0391 35.1426 15.4922 35.1426 17.1445V23.2617ZM23.4004 21.1523L30.2207 16.0723C30.1855 14.3496 29.8867 13.0723 29.3242 12.2402C28.7617 11.4082 27.918 10.9922 26.793 10.9922C25.6562 10.9922 24.8066 11.4316 24.2441 12.3105C23.6816 13.1895 23.4004 14.543 23.4004 16.3711V21.1523ZM30.2207 19.3945L23.4004 24.457C23.459 26.1445 23.7695 27.3984 24.332 28.2188C24.8945 29.0273 25.7266 29.4316 26.8281 29.4316C27.9766 29.4316 28.8262 28.9863 29.377 28.0957C29.9395 27.2051 30.2207 25.8398 30.2207 24V19.3945Z" fill="#C84646"/>
|
|
||||||
<path fill-rule="evenodd" clip-rule="evenodd" d="M33.6907 31.4492C32.8729 32.4144 31.8707 33.1467 30.6962 33.6406C29.525 34.133 28.2302 34.3691 26.8281 34.3691C25.4364 34.3691 24.1478 34.1326 22.9776 33.6406C21.8045 33.1473 20.7987 32.4168 19.9707 31.4553L19.9659 31.4496L19.9612 31.444C19.1495 30.4726 18.5364 29.2973 18.1056 27.9415L18.1022 27.9309C17.6804 26.5505 17.4785 24.9896 17.4785 23.2617V17.1445C17.4785 15.4174 17.6802 13.8617 18.1026 12.4917C18.5214 11.1217 19.13 9.94013 19.948 8.97468L19.9487 8.97375C20.7746 8.00132 21.7741 7.26256 22.9387 6.76726L22.9425 6.76566C24.1126 6.27367 25.4013 6.03711 26.793 6.03711C28.195 6.03711 29.4898 6.27323 30.661 6.76567C31.8366 7.25996 32.8385 7.99859 33.6552 8.97421C34.485 9.93964 35.0997 11.1215 35.5186 12.492C35.9409 13.862 36.1426 15.4176 36.1426 17.1445V23.2617C36.1426 24.9885 35.9409 26.5484 35.5197 27.9282C35.1125 29.2885 34.5101 30.4686 33.6951 31.444L33.6907 31.4492ZM34.5625 27.6387C34.9492 26.373 35.1426 24.9141 35.1426 23.2617V17.1445C35.1426 15.4922 34.9492 14.0391 34.5625 12.7852C34.1758 11.5195 33.6191 10.4648 32.8926 9.62109C32.1777 8.76562 31.3047 8.12109 30.2734 7.6875C29.2422 7.25391 28.082 7.03711 26.793 7.03711C25.5156 7.03711 24.3613 7.25391 23.3301 7.6875C22.3105 8.12109 21.4375 8.76562 20.7109 9.62109C19.9961 10.4648 19.4453 11.5195 19.0586 12.7852C18.6719 14.0391 18.4785 15.4922 18.4785 17.1445V23.2617C18.4785 24.9141 18.6719 26.373 19.0586 27.6387C19.457 28.8926 20.0137 29.9473 20.7285 30.8027C21.4551 31.6465 22.334 32.2852 23.3652 32.7188C24.3965 33.1523 25.5508 33.3691 26.8281 33.3691C28.1172 33.3691 29.2773 33.1523 30.3086 32.7188C31.3398 32.2852 32.2129 31.6465 32.9277 30.8027C33.6426 29.9473 34.1875 28.8926 34.5625 27.6387ZM28.5315 27.5617C28.9428 26.9104 29.2207 25.7744 29.2207 24V21.3822L24.4273 24.9402C24.5232 26.2585 24.7971 27.1271 25.1549 27.6505C25.506 28.1536 26.0103 28.4316 26.8281 28.4316C27.6702 28.4316 28.1781 28.1331 28.5264 27.5697L28.5315 27.5617ZM24.332 28.2188C23.7695 27.3984 23.459 26.1445 23.4004 24.457L30.2207 19.3945V24C30.2207 25.8398 29.9395 27.2051 29.377 28.0957C28.8262 28.9863 27.9766 29.4316 26.8281 29.4316C25.7266 29.4316 24.8945 29.0273 24.332 28.2188ZM29.2016 15.5844L24.4004 19.1606V16.3711C24.4004 14.6082 24.6784 13.487 25.0864 12.8496C25.4463 12.2872 25.9609 11.9922 26.793 11.9922C27.6326 11.9922 28.144 12.2799 28.4958 12.8003C28.855 13.3317 29.1242 14.2227 29.2016 15.5844ZM23.4004 21.1523V16.3711C23.4004 14.543 23.6816 13.1895 24.2441 12.3105C24.8066 11.4316 25.6562 10.9922 26.793 10.9922C27.918 10.9922 28.7617 11.4082 29.3242 12.2402C29.8867 13.0723 30.1855 14.3496 30.2207 16.0723L23.4004 21.1523Z" fill="white"/>
|
|
||||||
<path d="M61.7246 20.3965L63.1836 7.40625H77.3867V11.5547H67.209L66.5938 17.1797C66.957 16.9688 67.4727 16.752 68.1406 16.5293C68.8086 16.3066 69.5762 16.1953 70.4434 16.1953C71.6738 16.1953 72.7695 16.3945 73.7305 16.793C74.7031 17.1797 75.5176 17.7422 76.1738 18.4805C76.8418 19.2188 77.3516 20.1211 77.7031 21.1875C78.0547 22.2539 78.2305 23.4609 78.2305 24.8086C78.2305 25.957 78.0605 27.0469 77.7207 28.0781C77.3809 29.1094 76.8594 30.0176 76.1562 30.8027C75.4531 31.5879 74.5684 32.209 73.502 32.666C72.4355 33.123 71.1758 33.3516 69.7227 33.3516C68.6211 33.3516 67.5547 33.1875 66.5234 32.8594C65.5039 32.5312 64.5957 32.0508 63.7988 31.418C63.002 30.7852 62.3516 30.0117 61.8477 29.0977C61.3555 28.1719 61.0918 27.1172 61.0566 25.9336H65.873C65.9902 27.0469 66.3887 27.9082 67.0684 28.5176C67.7598 29.127 68.6387 29.4316 69.7051 29.4316C70.3613 29.4316 70.918 29.3086 71.375 29.0625C71.8438 28.8164 72.2188 28.4766 72.5 28.043C72.793 27.6094 73.0039 27.0938 73.1328 26.4961C73.2734 25.8984 73.3438 25.2539 73.3438 24.5625C73.3438 23.8828 73.2559 23.2617 73.0801 22.6992C72.916 22.125 72.6582 21.6328 72.3066 21.2227C71.9551 20.8125 71.5156 20.4961 70.9883 20.2734C70.4609 20.0508 69.8398 19.9395 69.125 19.9395C68.6445 19.9395 68.2285 19.9805 67.877 20.0625C67.5254 20.1445 67.2148 20.25 66.9453 20.3789C66.6758 20.5078 66.4355 20.6602 66.2246 20.8359C66.0137 21 65.8145 21.1758 65.627 21.3633L61.7246 20.3965Z" fill="#C84646"/>
|
|
||||||
<path fill-rule="evenodd" clip-rule="evenodd" d="M60.633 21.1563L62.2896 6.40625H78.3867V12.5547H68.1056L67.7727 15.5979C67.7899 15.5921 67.8071 15.5864 67.8244 15.5806C68.6148 15.3171 69.4926 15.1953 70.4434 15.1953C71.7789 15.1953 73.006 15.4112 74.1067 15.8664C75.2111 16.3066 76.1544 16.9545 76.9184 17.8129C77.6897 18.6664 78.2637 19.694 78.6528 20.8744C79.0436 22.0597 79.2305 23.3752 79.2305 24.8086C79.2305 26.0572 79.0455 27.2532 78.6705 28.3911C78.2888 29.5492 77.6991 30.5789 76.9012 31.4699C76.0914 32.3741 75.0826 33.0766 73.8959 33.5852C72.6778 34.1072 71.2781 34.3516 69.7226 34.3516C68.5201 34.3516 67.3513 34.1722 66.2202 33.8123L66.2171 33.8113C65.0891 33.4483 64.0729 32.9125 63.1769 32.2011C62.2737 31.4838 61.538 30.6074 60.9719 29.5804L60.9682 29.5738L60.9647 29.5671C60.3915 28.489 60.0962 27.2805 60.0571 25.9633L60.0265 24.9336H66.7733L66.8675 25.8289C66.9647 26.7521 67.2788 27.3617 67.7329 27.7703C68.2129 28.1919 68.8435 28.4316 69.7051 28.4316C70.2386 28.4316 70.6231 28.3316 70.9009 28.182L70.9101 28.1771C71.2308 28.0087 71.4755 27.7848 71.661 27.4988L71.6661 27.4909L71.6714 27.4831C71.8819 27.1715 72.0488 26.7788 72.1553 26.2853L72.1573 26.2761L72.1594 26.2671C72.2803 25.7532 72.3437 25.1863 72.3437 24.5625C72.3437 23.9688 72.267 23.45 72.1256 22.9975L72.1219 22.9858L72.1185 22.9739C71.9898 22.5235 71.7957 22.1632 71.5474 21.8734C71.3026 21.5879 70.9927 21.3608 70.5993 21.1947C70.2216 21.0352 69.7384 20.9395 69.125 20.9395C68.6975 20.9395 68.3614 20.9763 68.1042 21.0363C67.809 21.1052 67.5692 21.189 67.3768 21.281C67.1756 21.3773 67.0066 21.4859 66.8648 21.6042L66.8518 21.6149L66.8385 21.6253C66.6601 21.7641 66.492 21.9124 66.3341 22.0704L65.9347 22.4698L60.633 21.1563ZM67.0684 28.5176C66.3887 27.9082 65.9902 27.0469 65.873 25.9336H61.0566C61.0669 26.2778 61.0964 26.6112 61.1453 26.9336C61.2645 27.7198 61.4986 28.4411 61.8476 29.0977C62.3516 30.0117 63.0019 30.7852 63.7988 31.418C64.5957 32.0508 65.5039 32.5312 66.5234 32.8594C67.5547 33.1875 68.6211 33.3516 69.7226 33.3516C71.1758 33.3516 72.4355 33.123 73.5019 32.666C74.5684 32.209 75.4531 31.5879 76.1562 30.8027C76.8594 30.0176 77.3809 29.1094 77.7207 28.0781C78.0605 27.0469 78.2305 25.957 78.2305 24.8086C78.2305 23.4609 78.0547 22.2539 77.7031 21.1875C77.3516 20.1211 76.8418 19.2188 76.1738 18.4805C75.5176 17.7422 74.7031 17.1797 73.7305 16.793C72.7695 16.3945 71.6738 16.1953 70.4434 16.1953C69.5762 16.1953 68.8086 16.3066 68.1406 16.5293C67.9675 16.587 67.8047 16.6443 67.652 16.7012C67.2157 16.8639 66.8629 17.0234 66.5937 17.1797L67.209 11.5547H77.3867V7.40625H63.1836L61.7246 20.3965L65.6269 21.3633C65.8144 21.1758 66.0137 21 66.2246 20.8359C66.4355 20.6602 66.6758 20.5078 66.9453 20.3789C67.2148 20.25 67.5254 20.1445 67.8769 20.0625C68.2285 19.9805 68.6445 19.9395 69.125 19.9395C69.8398 19.9395 70.4609 20.0508 70.9883 20.2734C71.5156 20.4961 71.9551 20.8125 72.3066 21.2227C72.6582 21.6328 72.916 22.125 73.0801 22.6992C73.2559 23.2617 73.3437 23.8828 73.3437 24.5625C73.3437 25.2539 73.2734 25.8984 73.1328 26.4961C73.0039 27.0938 72.793 27.6094 72.5 28.043C72.2187 28.4766 71.8437 28.8164 71.375 29.0625C70.918 29.3086 70.3613 29.4316 69.7051 29.4316C68.6387 29.4316 67.7598 29.127 67.0684 28.5176Z" fill="white"/>
|
|
||||||
<path d="M121.143 23.2617C121.143 24.9141 120.949 26.373 120.562 27.6387C120.188 28.8926 119.643 29.9473 118.928 30.8027C118.213 31.6465 117.34 32.2852 116.309 32.7188C115.277 33.1523 114.117 33.3691 112.828 33.3691C111.551 33.3691 110.396 33.1523 109.365 32.7188C108.334 32.2852 107.455 31.6465 106.729 30.8027C106.014 29.9473 105.457 28.8926 105.059 27.6387C104.672 26.373 104.479 24.9141 104.479 23.2617V17.1445C104.479 15.4922 104.672 14.0391 105.059 12.7852C105.445 11.5195 105.996 10.4648 106.711 9.62109C107.438 8.76562 108.311 8.12109 109.33 7.6875C110.361 7.25391 111.516 7.03711 112.793 7.03711C114.082 7.03711 115.242 7.25391 116.273 7.6875C117.305 8.12109 118.178 8.76562 118.893 9.62109C119.619 10.4648 120.176 11.5195 120.562 12.7852C120.949 14.0391 121.143 15.4922 121.143 17.1445V23.2617ZM109.4 21.1523L116.221 16.0723C116.186 14.3496 115.887 13.0723 115.324 12.2402C114.762 11.4082 113.918 10.9922 112.793 10.9922C111.656 10.9922 110.807 11.4316 110.244 12.3105C109.682 13.1895 109.4 14.543 109.4 16.3711V21.1523ZM116.221 19.3945L109.4 24.457C109.459 26.1445 109.77 27.3984 110.332 28.2188C110.895 29.0273 111.727 29.4316 112.828 29.4316C113.977 29.4316 114.826 28.9863 115.377 28.0957C115.939 27.2051 116.221 25.8398 116.221 24V19.3945Z" fill="#C84646"/>
|
|
||||||
<path fill-rule="evenodd" clip-rule="evenodd" d="M119.691 31.4492C118.873 32.4144 117.871 33.1467 116.696 33.6406C115.525 34.133 114.23 34.3691 112.828 34.3691C111.436 34.3691 110.148 34.1326 108.978 33.6406C107.805 33.1473 106.799 32.4168 105.971 31.4553L105.966 31.4496L105.961 31.444C105.149 30.4726 104.536 29.2973 104.106 27.9415L104.102 27.9309C103.68 26.5505 103.479 24.9896 103.479 23.2617V17.1445C103.479 15.4174 103.68 13.8617 104.103 12.4917C104.521 11.1217 105.13 9.94013 105.948 8.97468L105.949 8.97375C106.775 8.00132 107.774 7.26256 108.939 6.76726L108.942 6.76566C110.113 6.27367 111.401 6.03711 112.793 6.03711C114.195 6.03711 115.49 6.27323 116.661 6.76567C117.837 7.25996 118.838 7.99859 119.655 8.97421C120.485 9.93964 121.1 11.1215 121.519 12.492C121.941 13.862 122.143 15.4176 122.143 17.1445V23.2617C122.143 24.9885 121.941 26.5484 121.52 27.9282C121.113 29.2885 120.51 30.4686 119.695 31.444L119.691 31.4492ZM120.562 27.6387C120.949 26.373 121.143 24.9141 121.143 23.2617V17.1445C121.143 15.4922 120.949 14.0391 120.562 12.7852C120.176 11.5195 119.619 10.4648 118.893 9.62109C118.178 8.76562 117.305 8.12109 116.273 7.6875C115.242 7.25391 114.082 7.03711 112.793 7.03711C111.516 7.03711 110.361 7.25391 109.33 7.6875C108.311 8.12109 107.438 8.76562 106.711 9.62109C105.996 10.4648 105.445 11.5195 105.059 12.7852C104.672 14.0391 104.479 15.4922 104.479 17.1445V23.2617C104.479 24.9141 104.672 26.373 105.059 27.6387C105.457 28.8926 106.014 29.9473 106.729 30.8027C107.455 31.6465 108.334 32.2852 109.365 32.7188C110.396 33.1523 111.551 33.3691 112.828 33.3691C114.117 33.3691 115.277 33.1523 116.309 32.7188C117.34 32.2852 118.213 31.6465 118.928 30.8027C119.643 29.9473 120.188 28.8926 120.562 27.6387ZM114.531 27.5617C114.943 26.9104 115.221 25.7744 115.221 24V21.3822L110.427 24.9402C110.523 26.2585 110.797 27.1271 111.155 27.6505C111.506 28.1536 112.01 28.4316 112.828 28.4316C113.67 28.4316 114.178 28.1331 114.526 27.5697L114.531 27.5617ZM110.332 28.2188C109.77 27.3984 109.459 26.1445 109.4 24.457L116.221 19.3945V24C116.221 25.8398 115.939 27.2051 115.377 28.0957C114.826 28.9863 113.977 29.4316 112.828 29.4316C111.727 29.4316 110.895 29.0273 110.332 28.2188ZM115.202 15.5844L110.4 19.1606V16.3711C110.4 14.6082 110.678 13.487 111.086 12.8496C111.446 12.2872 111.961 11.9922 112.793 11.9922C113.633 11.9922 114.144 12.2799 114.496 12.8003C114.855 13.3317 115.124 14.2227 115.202 15.5844ZM109.4 21.1523V16.3711C109.4 14.543 109.682 13.1895 110.244 12.3105C110.807 11.4316 111.656 10.9922 112.793 10.9922C113.918 10.9922 114.762 11.4082 115.324 12.2402C115.887 13.0723 116.186 14.3496 116.221 16.0723L109.4 21.1523Z" fill="white"/>
|
|
||||||
<path d="M34.6328 45.8145H18.6016V42H34.6328V45.8145Z" fill="black"/>
|
|
||||||
<path fill-rule="evenodd" clip-rule="evenodd" d="M35.6328 46.8145H17.6016V41H35.6328V46.8145ZM34.6328 45.8145V42H18.6016V45.8145H34.6328Z" fill="white"/>
|
|
||||||
<path d="M77.6328 45.8145H61.6016V42H77.6328V45.8145Z" fill="black"/>
|
|
||||||
<path fill-rule="evenodd" clip-rule="evenodd" d="M78.6328 46.8145H60.6016V41H78.6328V46.8145ZM77.6328 45.8145V42H61.6016V45.8145H77.6328Z" fill="white"/>
|
|
||||||
<path d="M120.633 45.8145H104.602V42H120.633V45.8145Z" fill="black"/>
|
|
||||||
<path fill-rule="evenodd" clip-rule="evenodd" d="M121.633 46.8145H103.602V41H121.633V46.8145ZM120.633 45.8145V42H104.602V45.8145H120.633Z" fill="white"/>
|
|
||||||
<path d="M65.8027 68H64.1768V57.2773L60.8281 58.5518V57.0664L65.6709 55.2031H65.8027V68Z" fill="black"/>
|
|
||||||
<path fill-rule="evenodd" clip-rule="evenodd" d="M66.8027 69H63.1768V58.7279L59.8281 60.0023V56.3797L65.4852 54.2031H66.8027V69ZM64.1768 57.2773V68H65.8027V55.2031H65.6709L60.8281 57.0664V58.5518L64.1768 57.2773Z" fill="white"/>
|
|
||||||
<path d="M79.2881 63.0859C79.2881 63.9004 79.1943 64.624 79.0068 65.2568C78.8193 65.8838 78.5498 66.4141 78.1982 66.8477C77.8467 67.2754 77.416 67.6006 76.9062 67.8232C76.3965 68.0459 75.8135 68.1572 75.1572 68.1572C74.5068 68.1572 73.9238 68.0459 73.4082 67.8232C72.8984 67.6006 72.4648 67.2754 72.1074 66.8477C71.75 66.4141 71.4746 65.8838 71.2812 65.2568C71.0938 64.624 71 63.9004 71 63.0859V60.0889C71 59.2744 71.0938 58.5537 71.2812 57.9268C71.4688 57.2939 71.7383 56.7607 72.0898 56.3271C72.4473 55.8936 72.8809 55.5654 73.3906 55.3428C73.9062 55.1143 74.4893 55 75.1396 55C75.7959 55 76.3789 55.1143 76.8887 55.3428C77.4043 55.5654 77.8379 55.8936 78.1895 56.3271C78.5469 56.7607 78.8193 57.2939 79.0068 57.9268C79.1943 58.5537 79.2881 59.2744 79.2881 60.0889V63.0859ZM72.6348 62.7607L77.6182 58.9375C77.5244 58.0879 77.2754 57.4434 76.8711 57.0039C76.4727 56.5586 75.8955 56.3359 75.1396 56.3359C74.2842 56.3359 73.6514 56.626 73.2412 57.2061C72.8369 57.7803 72.6348 58.6211 72.6348 59.7285V62.7607ZM77.6533 60.4932L72.6787 64.2988C72.7783 65.125 73.0332 65.7549 73.4434 66.1885C73.8535 66.6221 74.4248 66.8389 75.1572 66.8389C76.0186 66.8389 76.6484 66.5459 77.0469 65.96C77.4512 65.374 77.6533 64.5303 77.6533 63.4287V60.4932Z" fill="black"/>
|
|
||||||
<path fill-rule="evenodd" clip-rule="evenodd" d="M79.9656 65.5409L79.9649 65.5434C79.7463 66.2742 79.4217 66.9265 78.975 67.4775L78.9708 67.4826C78.5186 68.0328 77.9601 68.4542 77.3065 68.7396C76.6499 69.0264 75.9268 69.1572 75.1572 69.1572C74.3918 69.1572 73.6708 69.0259 73.0118 68.7413L73.0079 68.7396C72.3558 68.4548 71.7967 68.0353 71.3401 67.4889L71.3358 67.4837C70.8827 66.9341 70.5511 66.2826 70.3257 65.5515L70.3224 65.5409C70.1021 64.7973 70 63.975 70 63.0859V60.0889C70 59.2005 70.1019 58.3805 70.3228 57.6414C70.541 56.9056 70.8653 56.2496 71.3131 55.6973L71.3182 55.6911C71.774 55.1381 72.3336 54.7137 72.9879 54.4274C73.6486 54.1351 74.3719 54 75.1396 54C75.9101 54 76.6341 54.134 77.2914 54.4274C77.9503 54.7131 78.5116 55.1377 78.9636 55.6941C79.4184 56.2468 79.7466 56.9039 79.9653 57.6415C80.1861 58.3805 80.2881 59.2005 80.2881 60.0889V63.0859C80.2881 63.975 80.186 64.7973 79.9656 65.5409ZM79.0068 57.9268C78.8193 57.2939 78.5469 56.7607 78.1895 56.3271C77.8379 55.8936 77.4043 55.5654 76.8887 55.3428C76.3789 55.1143 75.7959 55 75.1396 55C74.4893 55 73.9062 55.1143 73.3906 55.3428C72.8809 55.5654 72.4473 55.8936 72.0898 56.3271C71.7383 56.7607 71.4688 57.2939 71.2812 57.9268C71.0938 58.5537 71 59.2744 71 60.0889V63.0859C71 63.9004 71.0938 64.624 71.2812 65.2568C71.4746 65.8838 71.75 66.4141 72.1074 66.8477C72.4648 67.2754 72.8984 67.6006 73.4082 67.8232C73.9238 68.0459 74.5068 68.1572 75.1572 68.1572C75.8135 68.1572 76.3965 68.0459 76.9062 67.8232C77.416 67.6006 77.8467 67.2754 78.1982 66.8477C78.5498 66.4141 78.8193 65.8838 79.0068 65.2568C79.1943 64.624 79.2881 63.9004 79.2881 63.0859V60.0889C79.2881 59.2744 79.1943 58.5537 79.0068 57.9268ZM72.6787 64.2988C72.7783 65.125 73.0332 65.7549 73.4434 66.1885C73.8535 66.6221 74.4248 66.8389 75.1572 66.8389C76.0186 66.8389 76.6484 66.5459 77.0469 65.96C77.4512 65.374 77.6533 64.5303 77.6533 63.4287V60.4932L72.6787 64.2988ZM77.6182 58.9375C77.5244 58.0879 77.2754 57.4434 76.8711 57.0039C76.4727 56.5586 75.8955 56.3359 75.1396 56.3359C74.2842 56.3359 73.6514 56.626 73.2412 57.2061C72.8369 57.7803 72.6348 58.6211 72.6348 59.7285V62.7607L77.6182 58.9375ZM73.6348 60.7332L76.5318 58.5105C76.4323 58.1057 76.2865 57.8454 76.1352 57.681L76.1258 57.6708C75.9649 57.491 75.6917 57.3359 75.1396 57.3359C74.5342 57.3359 74.2414 57.524 74.0583 57.7826C73.8235 58.1166 73.6348 58.7181 73.6348 59.7285V60.7332ZM76.6533 62.5172V63.4287C76.6533 64.4307 76.4656 65.0416 76.2238 65.392L76.2199 65.3977C76.0492 65.6487 75.7688 65.8389 75.1572 65.8389C74.6327 65.8389 74.3496 65.6913 74.1698 65.5013C74.0184 65.3412 73.8745 65.0952 73.7734 64.7205L76.6533 62.5172Z" fill="white"/>
|
|
||||||
<path d="M16.8027 68H15.1768V57.2773L11.8281 58.5518V57.0664L16.6709 55.2031H16.8027V68Z" fill="black"/>
|
|
||||||
<path d="M30.373 63.1045C30.373 63.9189 30.2793 64.6426 30.0918 65.2754C29.9043 65.9023 29.6348 66.4326 29.2832 66.8662C28.9316 67.2939 28.501 67.6191 27.9912 67.8418C27.4814 68.0645 26.8984 68.1758 26.2422 68.1758C25.5918 68.1758 25.0088 68.0645 24.4932 67.8418C23.9834 67.6191 23.5498 67.2939 23.1924 66.8662C22.835 66.4326 22.5596 65.9023 22.3662 65.2754C22.1787 64.6426 22.085 63.9189 22.085 63.1045V60.1074C22.085 59.293 22.1787 58.5723 22.3662 57.9453C22.5537 57.3125 22.8232 56.7793 23.1748 56.3457C23.5322 55.9121 23.9658 55.584 24.4756 55.3613C24.9912 55.1328 25.5742 55.0186 26.2246 55.0186C26.8809 55.0186 27.4639 55.1328 27.9736 55.3613C28.4893 55.584 28.9229 55.9121 29.2744 56.3457C29.6318 56.7793 29.9043 57.3125 30.0918 57.9453C30.2793 58.5723 30.373 59.293 30.373 60.1074V63.1045ZM23.7197 62.7793L28.7031 58.9561C28.6094 58.1064 28.3604 57.4619 27.9561 57.0225C27.5576 56.5771 26.9805 56.3545 26.2246 56.3545C25.3691 56.3545 24.7363 56.6445 24.3262 57.2246C23.9219 57.7988 23.7197 58.6396 23.7197 59.7471V62.7793ZM28.7383 60.5117L23.7637 64.3174C23.8633 65.1436 24.1182 65.7734 24.5283 66.207C24.9385 66.6406 25.5098 66.8574 26.2422 66.8574C27.1035 66.8574 27.7334 66.5645 28.1318 65.9785C28.5361 65.3926 28.7383 64.5488 28.7383 63.4473V60.5117Z" fill="black"/>
|
|
||||||
<path d="M41.1836 63.1045C41.1836 63.9189 41.0898 64.6426 40.9023 65.2754C40.7148 65.9023 40.4453 66.4326 40.0938 66.8662C39.7422 67.2939 39.3115 67.6191 38.8018 67.8418C38.292 68.0645 37.709 68.1758 37.0527 68.1758C36.4023 68.1758 35.8193 68.0645 35.3037 67.8418C34.7939 67.6191 34.3604 67.2939 34.0029 66.8662C33.6455 66.4326 33.3701 65.9023 33.1768 65.2754C32.9893 64.6426 32.8955 63.9189 32.8955 63.1045V60.1074C32.8955 59.293 32.9893 58.5723 33.1768 57.9453C33.3643 57.3125 33.6338 56.7793 33.9854 56.3457C34.3428 55.9121 34.7764 55.584 35.2861 55.3613C35.8018 55.1328 36.3848 55.0186 37.0352 55.0186C37.6914 55.0186 38.2744 55.1328 38.7842 55.3613C39.2998 55.584 39.7334 55.9121 40.085 56.3457C40.4424 56.7793 40.7148 57.3125 40.9023 57.9453C41.0898 58.5723 41.1836 59.293 41.1836 60.1074V63.1045ZM34.5303 62.7793L39.5137 58.9561C39.4199 58.1064 39.1709 57.4619 38.7666 57.0225C38.3682 56.5771 37.791 56.3545 37.0352 56.3545C36.1797 56.3545 35.5469 56.6445 35.1367 57.2246C34.7324 57.7988 34.5303 58.6396 34.5303 59.7471V62.7793ZM39.5488 60.5117L34.5742 64.3174C34.6738 65.1436 34.9287 65.7734 35.3389 66.207C35.749 66.6406 36.3203 66.8574 37.0527 66.8574C37.9141 66.8574 38.5439 66.5645 38.9424 65.9785C39.3467 65.3926 39.5488 64.5488 39.5488 63.4473V60.5117Z" fill="black"/>
|
|
||||||
<path fill-rule="evenodd" clip-rule="evenodd" d="M17.8027 69H14.1768V58.7279L10.8281 60.0023V56.3797L16.4852 54.2031H17.8027V69ZM15.1768 57.2773V68H16.8027V55.2031H16.6709L11.8281 57.0664V58.5518L15.1768 57.2773Z" fill="white"/>
|
|
||||||
<path d="M30.2881 63.0859C30.2881 63.9004 30.1943 64.624 30.0068 65.2568C29.8193 65.8838 29.5498 66.4141 29.1982 66.8477C28.8467 67.2754 28.416 67.6006 27.9062 67.8232C27.3965 68.0459 26.8135 68.1572 26.1572 68.1572C25.5068 68.1572 24.9238 68.0459 24.4082 67.8232C23.8984 67.6006 23.4648 67.2754 23.1074 66.8477C22.75 66.4141 22.4746 65.8838 22.2812 65.2568C22.0938 64.624 22 63.9004 22 63.0859V60.0889C22 59.2744 22.0938 58.5537 22.2812 57.9268C22.4688 57.2939 22.7383 56.7607 23.0898 56.3271C23.4473 55.8936 23.8809 55.5654 24.3906 55.3428C24.9062 55.1143 25.4893 55 26.1396 55C26.7959 55 27.3789 55.1143 27.8887 55.3428C28.4043 55.5654 28.8379 55.8936 29.1895 56.3271C29.5469 56.7607 29.8193 57.2939 30.0068 57.9268C30.1943 58.5537 30.2881 59.2744 30.2881 60.0889V63.0859ZM23.6348 62.7607L28.6182 58.9375C28.5244 58.0879 28.2754 57.4434 27.8711 57.0039C27.4727 56.5586 26.8955 56.3359 26.1396 56.3359C25.2842 56.3359 24.6514 56.626 24.2412 57.2061C23.8369 57.7803 23.6348 58.6211 23.6348 59.7285V62.7607ZM28.6533 60.4932L23.6787 64.2988C23.7783 65.125 24.0332 65.7549 24.4434 66.1885C24.8535 66.6221 25.4248 66.8389 26.1572 66.8389C27.0186 66.8389 27.6484 66.5459 28.0469 65.96C28.4512 65.374 28.6533 64.5303 28.6533 63.4287V60.4932Z" fill="black"/>
|
|
||||||
<path fill-rule="evenodd" clip-rule="evenodd" d="M30.9656 65.5409L30.9649 65.5434C30.7463 66.2742 30.4217 66.9265 29.975 67.4775L29.9708 67.4826C29.5186 68.0328 28.9601 68.4542 28.3065 68.7396C27.6499 69.0264 26.9268 69.1572 26.1572 69.1572C25.3918 69.1572 24.6708 69.0259 24.0118 68.7413L24.0079 68.7396C23.3558 68.4548 22.7967 68.0353 22.3401 67.4889L22.3358 67.4837C21.8827 66.9341 21.5511 66.2826 21.3257 65.5515L21.3224 65.5409C21.1021 64.7973 21 63.975 21 63.0859V60.0889C21 59.2005 21.1019 58.3805 21.3228 57.6414C21.541 56.9056 21.8653 56.2496 22.3131 55.6973L22.3182 55.6911C22.774 55.1381 23.3336 54.7137 23.9879 54.4274C24.6486 54.1351 25.3719 54 26.1396 54C26.9101 54 27.6341 54.134 28.2914 54.4274C28.9503 54.7131 29.5116 55.1377 29.9636 55.6941C30.4184 56.2468 30.7466 56.9039 30.9653 57.6415C31.1861 58.3805 31.2881 59.2005 31.2881 60.0889V63.0859C31.2881 63.975 31.186 64.7973 30.9656 65.5409ZM30.0068 57.9268C29.8193 57.2939 29.5469 56.7607 29.1895 56.3271C28.8379 55.8936 28.4043 55.5654 27.8887 55.3428C27.3789 55.1143 26.7959 55 26.1396 55C25.4893 55 24.9062 55.1143 24.3906 55.3428C23.8809 55.5654 23.4473 55.8936 23.0898 56.3271C22.7383 56.7607 22.4688 57.2939 22.2812 57.9268C22.0938 58.5537 22 59.2744 22 60.0889V63.0859C22 63.9004 22.0938 64.624 22.2812 65.2568C22.4746 65.8838 22.75 66.4141 23.1074 66.8477C23.4648 67.2754 23.8984 67.6006 24.4082 67.8232C24.9238 68.0459 25.5068 68.1572 26.1572 68.1572C26.8135 68.1572 27.3965 68.0459 27.9062 67.8232C28.416 67.6006 28.8467 67.2754 29.1982 66.8477C29.5498 66.4141 29.8193 65.8838 30.0068 65.2568C30.1943 64.624 30.2881 63.9004 30.2881 63.0859V60.0889C30.2881 59.2744 30.1943 58.5537 30.0068 57.9268ZM23.6787 64.2988C23.7783 65.125 24.0332 65.7549 24.4434 66.1885C24.8535 66.6221 25.4248 66.8389 26.1572 66.8389C27.0186 66.8389 27.6484 66.5459 28.0469 65.96C28.4512 65.374 28.6533 64.5303 28.6533 63.4287V60.4932L23.6787 64.2988ZM28.6182 58.9375C28.5244 58.0879 28.2754 57.4434 27.8711 57.0039C27.4727 56.5586 26.8955 56.3359 26.1396 56.3359C25.2842 56.3359 24.6514 56.626 24.2412 57.2061C23.8369 57.7803 23.6348 58.6211 23.6348 59.7285V62.7607L28.6182 58.9375ZM24.6348 60.7332L27.5318 58.5105C27.4323 58.1057 27.2865 57.8454 27.1352 57.681L27.1258 57.6708C26.9649 57.491 26.6917 57.3359 26.1396 57.3359C25.5342 57.3359 25.2414 57.524 25.0583 57.7826C24.8235 58.1166 24.6348 58.7181 24.6348 59.7285V60.7332ZM27.6533 62.5172V63.4287C27.6533 64.4307 27.4656 65.0416 27.2238 65.392L27.2199 65.3977C27.0492 65.6487 26.7688 65.8389 26.1572 65.8389C25.6327 65.8389 25.3496 65.6913 25.1698 65.5013C25.0184 65.3412 24.8745 65.0952 24.7734 64.7205L27.6533 62.5172Z" fill="white"/>
|
|
||||||
<path d="M41.2881 63.0859C41.2881 63.9004 41.1943 64.624 41.0068 65.2568C40.8193 65.8838 40.5498 66.4141 40.1982 66.8477C39.8467 67.2754 39.416 67.6006 38.9062 67.8232C38.3965 68.0459 37.8135 68.1572 37.1572 68.1572C36.5068 68.1572 35.9238 68.0459 35.4082 67.8232C34.8984 67.6006 34.4648 67.2754 34.1074 66.8477C33.75 66.4141 33.4746 65.8838 33.2812 65.2568C33.0938 64.624 33 63.9004 33 63.0859V60.0889C33 59.2744 33.0938 58.5537 33.2812 57.9268C33.4688 57.2939 33.7383 56.7607 34.0898 56.3271C34.4473 55.8936 34.8809 55.5654 35.3906 55.3428C35.9062 55.1143 36.4893 55 37.1396 55C37.7959 55 38.3789 55.1143 38.8887 55.3428C39.4043 55.5654 39.8379 55.8936 40.1895 56.3271C40.5469 56.7607 40.8193 57.2939 41.0068 57.9268C41.1943 58.5537 41.2881 59.2744 41.2881 60.0889V63.0859ZM34.6348 62.7607L39.6182 58.9375C39.5244 58.0879 39.2754 57.4434 38.8711 57.0039C38.4727 56.5586 37.8955 56.3359 37.1396 56.3359C36.2842 56.3359 35.6514 56.626 35.2412 57.2061C34.8369 57.7803 34.6348 58.6211 34.6348 59.7285V62.7607ZM39.6533 60.4932L34.6787 64.2988C34.7783 65.125 35.0332 65.7549 35.4434 66.1885C35.8535 66.6221 36.4248 66.8389 37.1572 66.8389C38.0186 66.8389 38.6484 66.5459 39.0469 65.96C39.4512 65.374 39.6533 64.5303 39.6533 63.4287V60.4932Z" fill="black"/>
|
|
||||||
<path fill-rule="evenodd" clip-rule="evenodd" d="M41.9656 65.5409L41.9649 65.5434C41.7463 66.2742 41.4217 66.9265 40.975 67.4775L40.9708 67.4826C40.5186 68.0328 39.9601 68.4542 39.3065 68.7396C38.6499 69.0264 37.9268 69.1572 37.1572 69.1572C36.3918 69.1572 35.6708 69.0259 35.0118 68.7413L35.0079 68.7396C34.3558 68.4548 33.7967 68.0353 33.3401 67.4889L33.3358 67.4837C32.8827 66.9341 32.5511 66.2826 32.3257 65.5515L32.3224 65.5409C32.1021 64.7973 32 63.975 32 63.0859V60.0889C32 59.2005 32.1019 58.3805 32.3228 57.6414C32.541 56.9056 32.8653 56.2496 33.3131 55.6973L33.3182 55.6911C33.774 55.1381 34.3336 54.7137 34.9879 54.4274C35.6486 54.1351 36.3719 54 37.1396 54C37.9101 54 38.6341 54.134 39.2914 54.4274C39.9503 54.7131 40.5116 55.1377 40.9636 55.6941C41.4184 56.2468 41.7466 56.9039 41.9653 57.6415C42.1861 58.3805 42.2881 59.2005 42.2881 60.0889V63.0859C42.2881 63.975 42.186 64.7973 41.9656 65.5409ZM41.0068 57.9268C40.8193 57.2939 40.5469 56.7607 40.1895 56.3271C39.8379 55.8936 39.4043 55.5654 38.8887 55.3428C38.3789 55.1143 37.7959 55 37.1396 55C36.4893 55 35.9062 55.1143 35.3906 55.3428C34.8809 55.5654 34.4473 55.8936 34.0898 56.3271C33.7383 56.7607 33.4688 57.2939 33.2812 57.9268C33.0938 58.5537 33 59.2744 33 60.0889V63.0859C33 63.9004 33.0938 64.624 33.2812 65.2568C33.4746 65.8838 33.75 66.4141 34.1074 66.8477C34.4648 67.2754 34.8984 67.6006 35.4082 67.8232C35.9238 68.0459 36.5068 68.1572 37.1572 68.1572C37.8135 68.1572 38.3965 68.0459 38.9062 67.8232C39.416 67.6006 39.8467 67.2754 40.1982 66.8477C40.5498 66.4141 40.8193 65.8838 41.0068 65.2568C41.1943 64.624 41.2881 63.9004 41.2881 63.0859V60.0889C41.2881 59.2744 41.1943 58.5537 41.0068 57.9268ZM34.6787 64.2988C34.7783 65.125 35.0332 65.7549 35.4434 66.1885C35.8535 66.6221 36.4248 66.8389 37.1572 66.8389C38.0186 66.8389 38.6484 66.5459 39.0469 65.96C39.4512 65.374 39.6533 64.5303 39.6533 63.4287V60.4932L34.6787 64.2988ZM39.6182 58.9375C39.5244 58.0879 39.2754 57.4434 38.8711 57.0039C38.4727 56.5586 37.8955 56.3359 37.1396 56.3359C36.2842 56.3359 35.6514 56.626 35.2412 57.2061C34.8369 57.7803 34.6348 58.6211 34.6348 59.7285V62.7607L39.6182 58.9375ZM35.6348 60.7332L38.5318 58.5105C38.4323 58.1057 38.2865 57.8454 38.1352 57.681L38.1258 57.6708C37.9649 57.491 37.6917 57.3359 37.1396 57.3359C36.5342 57.3359 36.2414 57.524 36.0583 57.7826C35.8235 58.1166 35.6348 58.7181 35.6348 59.7285V60.7332ZM38.6533 62.5172V63.4287C38.6533 64.4307 38.4656 65.0416 38.2238 65.392L38.2199 65.3977C38.0492 65.6487 37.7688 65.8389 37.1572 65.8389C36.6327 65.8389 36.3496 65.6913 36.1698 65.5013C36.0184 65.3412 35.8745 65.0952 35.7734 64.7205L38.6533 62.5172Z" fill="white"/>
|
|
||||||
<path d="M113.803 68H112.177V57.2773L108.828 58.5518V57.0664L113.671 55.2031H113.803V68Z" fill="black"/>
|
|
||||||
<path fill-rule="evenodd" clip-rule="evenodd" d="M114.803 69H111.177V58.7279L107.828 60.0023V56.3797L113.485 54.2031H114.803V69ZM112.177 57.2773V68H113.803V55.2031H113.671L108.828 57.0664V58.5518L112.177 57.2773Z" fill="white"/>
|
|
||||||
<g filter="url(#filter0_dddd)">
|
|
||||||
<path fill-rule="evenodd" clip-rule="evenodd" d="M73.0711 151.343L66.7071 157.707C66.3166 158.098 65.6834 158.098 65.2929 157.707L58.9289 151.343C58.5384 150.953 58.5384 150.319 58.9289 149.929C59.3194 149.538 59.9526 149.538 60.3431 149.929L65 154.586L65 140L67 140L67 154.586L71.6568 149.929C72.0474 149.538 72.6805 149.538 73.0711 149.929C73.4616 150.319 73.4616 150.953 73.0711 151.343Z" fill="black"/>
|
|
||||||
</g>
|
|
||||||
<path d="M67.2402 120.136H70.8174V121.753H67.2402V125.717H65.6143V121.753H62.0459V120.136H65.6143V116.4H67.2402V120.136Z" fill="black"/>
|
|
||||||
<path fill-rule="evenodd" clip-rule="evenodd" d="M71.8174 119.136V122.753H68.2402V126.717H64.6143V122.753H61.0459V119.136H64.6143V115.4H68.2402V119.136H71.8174ZM65.6143 120.136H62.0459V121.753H65.6143V125.717H67.2402V121.753H70.8174V120.136H67.2402V116.4H65.6143V120.136Z" fill="white"/>
|
|
||||||
<g filter="url(#filter1_dddd)">
|
|
||||||
<path fill-rule="evenodd" clip-rule="evenodd" d="M86.7071 100.52C86.3166 100.91 85.6834 100.91 85.2929 100.52L78.9289 94.1559C78.5384 93.7654 78.5384 93.1322 78.9289 92.7417C79.3195 92.3512 79.9526 92.3512 80.3431 92.7417L85.0565 97.4551C85.2835 93.1235 86.2294 90.4154 88.5133 88.9145C89.8074 88.0642 91.4202 87.6829 93.2837 87.4974C95.1379 87.3127 97.3664 87.3127 99.9548 87.3127L100 87.3127C100.774 87.3127 101.501 87.3143 102.186 87.3157C104.564 87.3208 106.424 87.3248 107.902 87.259C109.839 87.1729 110.914 86.9688 111.549 86.6224C112.062 86.3425 112.369 85.9245 112.548 84.9649C112.742 83.9299 112.746 82.48 112.746 80.3128L114.746 80.3128L114.746 80.4197C114.746 82.453 114.746 84.0923 114.514 85.3325C114.264 86.6698 113.712 87.7206 112.506 88.3781C111.423 88.9692 109.92 89.1713 107.991 89.2571C106.462 89.325 104.537 89.3209 102.147 89.3157C101.469 89.3143 100.754 89.3127 100 89.3127C97.3576 89.3127 95.2263 89.3138 93.4819 89.4875C91.7361 89.6613 90.5051 89.9988 89.6117 90.586C88.1781 91.528 87.3066 93.3366 87.0674 97.3312L91.6569 92.7417C92.0474 92.3512 92.6805 92.3512 93.0711 92.7417C93.4616 93.1322 93.4616 93.7654 93.0711 94.1559L86.7071 100.52Z" fill="black"/>
|
|
||||||
</g>
|
|
||||||
<g filter="url(#filter2_dddd)">
|
|
||||||
<path fill-rule="evenodd" clip-rule="evenodd" d="M43.7168 100.52C43.3263 100.91 42.6931 100.91 42.3026 100.52L35.9386 94.1559C35.5481 93.7654 35.5481 93.1322 35.9386 92.7417C36.3291 92.3512 36.9623 92.3512 37.3528 92.7417L42.0662 97.4551C42.2932 93.1235 43.2391 90.4154 45.523 88.9145C46.8171 88.0642 48.4299 87.6829 50.2934 87.4974C52.1476 87.3127 54.3761 87.3127 56.9645 87.3127L57.0097 87.3127C57.7834 87.3127 58.511 87.3143 59.1957 87.3157C61.5734 87.3208 63.4341 87.3248 64.912 87.259C66.8489 87.1729 67.9233 86.9688 68.5582 86.6224C69.0713 86.3425 69.3782 85.9245 69.5577 84.9649C69.7512 83.9299 69.7554 82.48 69.7554 80.3128L71.7554 80.3128L71.7554 80.4197C71.7555 82.453 71.7555 84.0923 71.5236 85.3325C71.2735 86.6698 70.7213 87.7206 69.5162 88.3781C68.4329 88.9692 66.93 89.1713 65.0008 89.2571C63.4719 89.325 61.5462 89.3209 59.1562 89.3157C58.4786 89.3143 57.7636 89.3127 57.0097 89.3127C54.3673 89.3127 52.2359 89.3138 50.4916 89.4875C48.7457 89.6613 47.5148 89.9988 46.6214 90.586C45.1878 91.528 44.3163 93.3366 44.0771 97.3312L48.6665 92.7417C49.0571 92.3512 49.6902 92.3512 50.0808 92.7417C50.4713 93.1322 50.4713 93.7654 50.0808 94.1559L43.7168 100.52Z" fill="black"/>
|
|
||||||
</g>
|
|
||||||
<path d="M57.5697 176.565L58.2113 170.185H64.7767V171.767H59.5824L59.2221 175.177C59.474 175.03 59.7758 174.901 60.1273 174.79C60.4789 174.679 60.8861 174.623 61.349 174.623C61.9408 174.623 62.4711 174.726 62.9398 174.931C63.4086 175.136 63.807 175.426 64.1351 175.801C64.4633 176.17 64.7152 176.618 64.891 177.146C65.0668 177.673 65.1547 178.259 65.1547 178.903C65.1547 179.513 65.0726 180.078 64.9086 180.6C64.7445 181.121 64.4955 181.572 64.1615 181.953C63.8334 182.328 63.4174 182.624 62.9135 182.841C62.4096 183.052 61.8178 183.157 61.1381 183.157C60.6166 183.157 60.1244 183.084 59.6615 182.938C59.1986 182.791 58.7855 182.571 58.4223 182.278C58.0648 181.985 57.7689 181.616 57.5346 181.171C57.306 180.726 57.1625 180.207 57.1039 179.615H58.6508C58.7504 180.342 59.017 180.893 59.4506 181.268C59.89 181.643 60.4525 181.83 61.1381 181.83C61.5248 181.83 61.8676 181.763 62.1664 181.628C62.4652 181.487 62.7142 181.291 62.9135 181.039C63.1185 180.781 63.2709 180.474 63.3705 180.116C63.476 179.759 63.5287 179.36 63.5287 178.921C63.5287 178.522 63.4701 178.15 63.3529 177.805C63.2416 177.459 63.0775 177.16 62.8607 176.908C62.6439 176.65 62.3773 176.448 62.0609 176.302C61.7445 176.155 61.3812 176.082 60.9711 176.082C60.7016 176.082 60.4672 176.103 60.268 176.144C60.0746 176.179 59.8988 176.231 59.7406 176.302C59.5824 176.372 59.433 176.457 59.2924 176.557C59.1576 176.656 59.017 176.771 58.8705 176.899L57.5697 176.565Z" fill="#001AFF"/>
|
|
||||||
<path d="M75.8334 178.086C75.8334 178.9 75.7396 179.624 75.5521 180.257C75.3646 180.884 75.0951 181.414 74.7435 181.848C74.392 182.275 73.9613 182.601 73.4516 182.823C72.9418 183.046 72.3588 183.157 71.7025 183.157C71.0521 183.157 70.4691 183.046 69.9535 182.823C69.4437 182.601 69.0101 182.275 68.6527 181.848C68.2953 181.414 68.0199 180.884 67.8266 180.257C67.6391 179.624 67.5453 178.9 67.5453 178.086V175.089C67.5453 174.274 67.6391 173.554 67.8266 172.927C68.0141 172.294 68.2836 171.761 68.6351 171.327C68.9926 170.894 69.4262 170.565 69.9359 170.343C70.4516 170.114 71.0346 170 71.685 170C72.3412 170 72.9242 170.114 73.434 170.343C73.9496 170.565 74.3832 170.894 74.7348 171.327C75.0922 171.761 75.3646 172.294 75.5521 172.927C75.7396 173.554 75.8334 174.274 75.8334 175.089V178.086ZM69.1801 177.761L74.1635 173.938C74.0697 173.088 73.8207 172.443 73.4164 172.004C73.018 171.559 72.4408 171.336 71.685 171.336C70.8295 171.336 70.1967 171.626 69.7865 172.206C69.3822 172.78 69.1801 173.621 69.1801 174.729V177.761ZM74.1986 175.493L69.224 179.299C69.3236 180.125 69.5785 180.755 69.9887 181.188C70.3988 181.622 70.9701 181.839 71.7025 181.839C72.5639 181.839 73.1937 181.546 73.5922 180.96C73.9965 180.374 74.1986 179.53 74.1986 178.429V175.493Z" fill="#001AFF"/>
|
|
||||||
<path fill-rule="evenodd" clip-rule="evenodd" d="M69.1801 177.761L74.1635 173.938C74.0697 173.088 73.8207 172.443 73.4164 172.004C73.018 171.559 72.4408 171.336 71.685 171.336C70.8295 171.336 70.1967 171.626 69.7865 172.206C69.3822 172.78 69.1801 173.621 69.1801 174.729V177.761ZM73.0847 173.493L70.1876 175.716V174.711C70.1876 173.7 70.3764 173.099 70.6112 172.765C70.7944 172.506 71.0872 172.318 71.6925 172.318C72.2446 172.318 72.5178 172.473 72.6786 172.653L72.688 172.663C72.8393 172.828 72.9851 173.088 73.0847 173.493Z" fill="white"/>
|
|
||||||
<path fill-rule="evenodd" clip-rule="evenodd" d="M74.1986 175.493L69.224 179.299C69.3236 180.125 69.5785 180.755 69.9887 181.188C70.3988 181.622 70.9701 181.839 71.7025 181.839C72.5639 181.839 73.1937 181.546 73.5922 180.96C73.9965 180.374 74.1986 179.53 74.1986 178.429V175.493ZM73.2062 178.411V177.5L70.3262 179.703C70.4273 180.078 70.5713 180.324 70.7227 180.484C70.9024 180.674 71.1856 180.821 71.7101 180.821C72.3217 180.821 72.6021 180.631 72.7728 180.38L72.7767 180.374C73.0184 180.024 73.2062 179.413 73.2062 178.411Z" fill="white"/>
|
|
||||||
<path fill-rule="evenodd" clip-rule="evenodd" d="M76.5102 180.543L76.5109 180.541C76.7313 179.797 76.8333 178.975 76.8333 178.086V175.089C76.8333 174.201 76.7314 173.381 76.5106 172.641C76.2919 171.904 75.9637 171.247 75.509 170.694C75.057 170.138 74.4956 169.713 73.8367 169.427L73.8454 169.427C73.1848 169.135 72.4614 169 71.6937 169H71.685C71.685 169 70.1939 169.135 69.5332 169.427C68.8789 169.714 68.3193 170.138 67.8635 170.691L67.8584 170.697C67.4106 171.25 67.0863 171.906 66.8681 172.641C66.6472 173.381 66.5453 174.201 66.5453 175.089V178.086C66.5453 178.975 66.6474 179.797 66.8677 180.541L66.8684 180.543L66.871 180.552C67.0964 181.283 67.428 181.934 67.8811 182.484L67.8583 182.477L67.8625 182.483L67.8854 182.489C68.342 183.035 68.9011 183.455 69.5532 183.74L69.5268 183.74C70.1834 184.026 71.6761 184.157 71.6761 184.157H71.7025C72.4721 184.157 73.1952 184.026 73.8518 183.74L73.8254 183.74C74.4775 183.455 75.0367 183.035 75.4933 182.489L75.5161 182.483L75.5203 182.477C75.967 181.926 76.2916 181.274 76.5102 180.543ZM75.5521 180.257C75.7396 179.624 75.8334 178.9 75.8334 178.086V175.089C75.8334 174.274 75.7396 173.554 75.5521 172.927C75.3646 172.294 75.0922 171.761 74.7348 171.327C74.3832 170.894 73.9496 170.565 73.434 170.343C72.9242 170.114 72.3412 170 71.685 170C71.0346 170 70.4516 170.114 69.9359 170.343C69.4262 170.565 68.9926 170.894 68.6351 171.327C68.2836 171.761 68.0141 172.294 67.8266 172.927C67.6391 173.554 67.5453 174.274 67.5453 175.089V178.086C67.5453 178.9 67.6391 179.624 67.8266 180.257C68.0199 180.884 68.2953 181.414 68.6527 181.848C69.0101 182.275 69.4437 182.601 69.9535 182.823C70.4691 183.046 71.0521 183.157 71.7025 183.157C72.3588 183.157 72.9418 183.046 73.4516 182.823C73.9613 182.601 74.392 182.275 74.7435 181.848C75.0951 181.414 75.3646 180.884 75.5521 180.257Z" fill="white"/>
|
|
||||||
<path fill-rule="evenodd" clip-rule="evenodd" d="M60.4823 172.767L60.3835 173.702C60.6925 173.648 61.0155 173.623 61.349 173.623C62.0573 173.623 62.7272 173.746 63.3407 174.015C63.9393 174.276 64.458 174.652 64.8852 175.139C65.3126 175.621 65.6269 176.191 65.8397 176.829C66.0544 177.473 66.1547 178.168 66.1547 178.903C66.1547 179.603 66.0604 180.271 65.8625 180.9C65.6602 181.543 65.3463 182.118 64.9141 182.612C64.4782 183.11 63.9356 183.49 63.3087 183.759L63.2996 183.763C62.6475 184.036 61.919 184.157 61.1381 184.157C60.5218 184.157 59.9273 184.07 59.3598 183.891C58.7832 183.708 58.2585 183.431 57.7945 183.057L57.7883 183.052C57.3186 182.667 56.9407 182.19 56.6496 181.637L56.6449 181.627C56.3494 181.052 56.1774 180.407 56.1088 179.714L56 178.615H59.523L59.6415 179.479C59.7173 180.032 59.9003 180.333 60.1023 180.509C60.328 180.701 60.6457 180.83 61.1381 180.83C61.4039 180.83 61.6004 180.785 61.7481 180.72C61.9074 180.643 62.0301 180.544 62.1291 180.419L62.1309 180.417C62.2427 180.276 62.339 180.093 62.4072 179.848L62.4092 179.84L62.4114 179.833C62.4854 179.582 62.5287 179.281 62.5287 178.921C62.5287 178.622 62.4849 178.359 62.4059 178.126L62.4034 178.118L62.4011 178.111C62.3268 177.881 62.2247 177.702 62.1027 177.56L62.0953 177.552C61.9762 177.41 61.829 177.296 61.6408 177.209C61.4773 177.134 61.2615 177.082 60.9711 177.082C60.7489 177.082 60.5851 177.099 60.4696 177.123L60.4583 177.125L60.4468 177.127C60.3214 177.15 60.2233 177.182 60.1468 177.216C60.0516 177.258 59.9623 177.308 59.8781 177.367C59.7719 177.446 59.6563 177.54 59.5311 177.65L59.1341 178L56.4888 177.32L57.3068 169.185H65.7768V172.767H60.4823ZM57.5697 176.565L58.2113 170.185H64.7767V171.767H59.5824L59.2221 175.177C59.474 175.03 59.7758 174.901 60.1273 174.79C60.4789 174.679 60.8861 174.623 61.349 174.623C61.9408 174.623 62.4711 174.726 62.9398 174.931C63.4086 175.136 63.807 175.426 64.1351 175.801C64.4633 176.17 64.7152 176.618 64.891 177.146C65.0668 177.673 65.1547 178.259 65.1547 178.903C65.1547 179.513 65.0726 180.078 64.9086 180.6C64.7445 181.121 64.4955 181.572 64.1615 181.953C63.8334 182.328 63.4174 182.624 62.9135 182.841C62.4096 183.052 61.8178 183.157 61.1381 183.157C60.6166 183.157 60.1244 183.084 59.6615 182.938C59.1986 182.791 58.7855 182.571 58.4223 182.278C58.0648 181.985 57.7689 181.616 57.5346 181.171C57.306 180.726 57.1625 180.207 57.1039 179.615H58.6508C58.7504 180.342 59.017 180.893 59.4506 181.268C59.89 181.643 60.4525 181.83 61.1381 181.83C61.5248 181.83 61.8676 181.763 62.1664 181.628C62.4652 181.487 62.7142 181.291 62.9135 181.039C63.1185 180.781 63.2709 180.474 63.3705 180.116C63.476 179.759 63.5287 179.36 63.5287 178.921C63.5287 178.522 63.4701 178.15 63.3529 177.805C63.2416 177.459 63.0775 177.16 62.8607 176.908C62.6439 176.65 62.3773 176.448 62.0609 176.302C61.7445 176.155 61.3812 176.082 60.9711 176.082C60.7016 176.082 60.4672 176.103 60.268 176.144C60.0746 176.179 59.8988 176.231 59.7406 176.302C59.5824 176.372 59.433 176.457 59.2924 176.557C59.1576 176.656 59.017 176.771 58.8705 176.899L57.5697 176.565Z" fill="white"/>
|
|
||||||
<path d="M34.5697 120.565L35.2113 114.185H41.7767V115.767H36.5824L36.2221 119.177C36.474 119.03 36.7758 118.901 37.1273 118.79C37.4789 118.679 37.8861 118.623 38.349 118.623C38.9408 118.623 39.4711 118.726 39.9398 118.931C40.4086 119.136 40.807 119.426 41.1351 119.801C41.4633 120.17 41.7152 120.618 41.891 121.146C42.0668 121.673 42.1547 122.259 42.1547 122.903C42.1547 123.513 42.0726 124.078 41.9086 124.6C41.7445 125.121 41.4955 125.572 41.1615 125.953C40.8334 126.328 40.4174 126.624 39.9135 126.841C39.4096 127.052 38.8178 127.157 38.1381 127.157C37.6166 127.157 37.1244 127.084 36.6615 126.938C36.1986 126.791 35.7855 126.571 35.4223 126.278C35.0648 125.985 34.7689 125.616 34.5346 125.171C34.306 124.726 34.1625 124.207 34.1039 123.615H35.6508C35.7504 124.342 36.017 124.893 36.4506 125.268C36.89 125.643 37.4525 125.83 38.1381 125.83C38.5248 125.83 38.8676 125.763 39.1664 125.628C39.4652 125.487 39.7142 125.291 39.9135 125.039C40.1185 124.781 40.2709 124.474 40.3705 124.116C40.476 123.759 40.5287 123.36 40.5287 122.921C40.5287 122.522 40.4701 122.15 40.3529 121.805C40.2416 121.459 40.0775 121.16 39.8607 120.908C39.6439 120.65 39.3773 120.448 39.0609 120.302C38.7445 120.155 38.3812 120.082 37.9711 120.082C37.7016 120.082 37.4672 120.103 37.268 120.144C37.0746 120.179 36.8988 120.231 36.7406 120.302C36.5824 120.372 36.433 120.457 36.2924 120.557C36.1576 120.656 36.017 120.771 35.8705 120.899L34.5697 120.565Z" fill="black"/>
|
|
||||||
<path d="M52.8334 122.086C52.8334 122.9 52.7396 123.624 52.5521 124.257C52.3646 124.884 52.0951 125.414 51.7435 125.848C51.392 126.275 50.9613 126.601 50.4516 126.823C49.9418 127.046 49.3588 127.157 48.7025 127.157C48.0521 127.157 47.4691 127.046 46.9535 126.823C46.4437 126.601 46.0101 126.275 45.6527 125.848C45.2953 125.414 45.0199 124.884 44.8266 124.257C44.6391 123.624 44.5453 122.9 44.5453 122.086V119.089C44.5453 118.274 44.6391 117.554 44.8266 116.927C45.0141 116.294 45.2836 115.761 45.6351 115.327C45.9926 114.894 46.4262 114.565 46.9359 114.343C47.4516 114.114 48.0346 114 48.685 114C49.3412 114 49.9242 114.114 50.434 114.343C50.9496 114.565 51.3832 114.894 51.7348 115.327C52.0922 115.761 52.3646 116.294 52.5521 116.927C52.7396 117.554 52.8334 118.274 52.8334 119.089V122.086ZM46.1801 121.761L51.1635 117.938C51.0697 117.088 50.8207 116.443 50.4164 116.004C50.018 115.559 49.4408 115.336 48.685 115.336C47.8295 115.336 47.1967 115.626 46.7865 116.206C46.3822 116.78 46.1801 117.621 46.1801 118.729V121.761ZM51.1986 119.493L46.224 123.299C46.3236 124.125 46.5785 124.755 46.9887 125.188C47.3988 125.622 47.9701 125.839 48.7025 125.839C49.5639 125.839 50.1937 125.546 50.5922 124.96C50.9965 124.374 51.1986 123.53 51.1986 122.429V119.493Z" fill="black"/>
|
|
||||||
<path fill-rule="evenodd" clip-rule="evenodd" d="M46.1801 121.761L51.1635 117.938C51.0697 117.088 50.8207 116.443 50.4164 116.004C50.018 115.559 49.4408 115.336 48.685 115.336C47.8295 115.336 47.1967 115.626 46.7865 116.206C46.3822 116.78 46.1801 117.621 46.1801 118.729V121.761ZM50.0847 117.493L47.1876 119.716V118.711C47.1876 117.7 47.3764 117.099 47.6112 116.765C47.7944 116.506 48.0872 116.318 48.6925 116.318C49.2446 116.318 49.5178 116.473 49.6786 116.653L49.688 116.663C49.8393 116.828 49.9851 117.088 50.0847 117.493Z" fill="white"/>
|
|
||||||
<path fill-rule="evenodd" clip-rule="evenodd" d="M51.1986 119.493L46.224 123.299C46.3236 124.125 46.5785 124.755 46.9887 125.188C47.3988 125.622 47.9701 125.839 48.7025 125.839C49.5639 125.839 50.1937 125.546 50.5922 124.96C50.9965 124.374 51.1986 123.53 51.1986 122.429V119.493ZM50.2062 122.411V121.5L47.3262 123.703C47.4273 124.078 47.5713 124.324 47.7227 124.484C47.9024 124.674 48.1856 124.821 48.7101 124.821C49.3217 124.821 49.6021 124.631 49.7728 124.38L49.7767 124.374C50.0184 124.024 50.2062 123.413 50.2062 122.411Z" fill="white"/>
|
|
||||||
<path fill-rule="evenodd" clip-rule="evenodd" d="M53.5102 124.543L53.5109 124.541C53.7313 123.797 53.8333 122.975 53.8333 122.086V119.089C53.8333 118.201 53.7314 117.381 53.5106 116.641C53.2919 115.904 52.9637 115.247 52.509 114.694C52.057 114.138 51.4956 113.713 50.8367 113.427L50.8454 113.427C50.1848 113.135 49.4614 113 48.6937 113H48.685C48.685 113 47.1939 113.135 46.5332 113.427C45.8789 113.714 45.3193 114.138 44.8635 114.691L44.8584 114.697C44.4106 115.25 44.0863 115.906 43.8681 116.641C43.6472 117.381 43.5453 118.201 43.5453 119.089V122.086C43.5453 122.975 43.6474 123.797 43.8677 124.541L43.8684 124.543L43.871 124.552C44.0964 125.283 44.428 125.934 44.8811 126.484L44.8583 126.477L44.8625 126.483L44.8854 126.489C45.342 127.035 45.9011 127.455 46.5532 127.74L46.5268 127.74C47.1834 128.026 48.6761 128.157 48.6761 128.157H48.7025C49.4721 128.157 50.1952 128.026 50.8518 127.74L50.8254 127.74C51.4775 127.455 52.0367 127.035 52.4933 126.489L52.5161 126.483L52.5203 126.477C52.967 125.926 53.2916 125.274 53.5102 124.543ZM52.5521 124.257C52.7396 123.624 52.8334 122.9 52.8334 122.086V119.089C52.8334 118.274 52.7396 117.554 52.5521 116.927C52.3646 116.294 52.0922 115.761 51.7348 115.327C51.3832 114.894 50.9496 114.565 50.434 114.343C49.9242 114.114 49.3412 114 48.685 114C48.0346 114 47.4516 114.114 46.9359 114.343C46.4262 114.565 45.9926 114.894 45.6351 115.327C45.2836 115.761 45.0141 116.294 44.8266 116.927C44.6391 117.554 44.5453 118.274 44.5453 119.089V122.086C44.5453 122.9 44.6391 123.624 44.8266 124.257C45.0199 124.884 45.2953 125.414 45.6527 125.848C46.0101 126.275 46.4437 126.601 46.9535 126.823C47.4691 127.046 48.0521 127.157 48.7025 127.157C49.3588 127.157 49.9418 127.046 50.4516 126.823C50.9613 126.601 51.392 126.275 51.7435 125.848C52.0951 125.414 52.3646 124.884 52.5521 124.257Z" fill="white"/>
|
|
||||||
<path fill-rule="evenodd" clip-rule="evenodd" d="M37.4823 116.767L37.3835 117.702C37.6925 117.648 38.0155 117.623 38.349 117.623C39.0573 117.623 39.7272 117.746 40.3407 118.015C40.9393 118.276 41.458 118.652 41.8852 119.139C42.3126 119.621 42.6269 120.191 42.8397 120.829C43.0544 121.473 43.1547 122.168 43.1547 122.903C43.1547 123.603 43.0604 124.271 42.8625 124.9C42.6602 125.543 42.3463 126.118 41.9141 126.612C41.4782 127.11 40.9356 127.49 40.3087 127.759L40.2996 127.763C39.6475 128.036 38.919 128.157 38.1381 128.157C37.5218 128.157 36.9273 128.07 36.3598 127.891C35.7832 127.708 35.2585 127.431 34.7945 127.057L34.7883 127.052C34.3186 126.667 33.9407 126.19 33.6496 125.637L33.6449 125.627C33.3494 125.052 33.1774 124.407 33.1088 123.714L33 122.615H36.523L36.6415 123.479C36.7173 124.032 36.9003 124.333 37.1023 124.509C37.328 124.701 37.6457 124.83 38.1381 124.83C38.4039 124.83 38.6004 124.785 38.7481 124.72C38.9074 124.643 39.0301 124.544 39.1291 124.419L39.1309 124.417C39.2427 124.276 39.339 124.093 39.4072 123.848L39.4092 123.84L39.4114 123.833C39.4854 123.582 39.5287 123.281 39.5287 122.921C39.5287 122.622 39.4849 122.359 39.4059 122.126L39.4034 122.118L39.4011 122.111C39.3268 121.881 39.2247 121.702 39.1027 121.56L39.0953 121.552C38.9762 121.41 38.829 121.296 38.6408 121.209C38.4773 121.134 38.2615 121.082 37.9711 121.082C37.7489 121.082 37.5851 121.099 37.4696 121.123L37.4583 121.125L37.4468 121.127C37.3214 121.15 37.2233 121.182 37.1468 121.216C37.0516 121.258 36.9623 121.308 36.8781 121.367C36.7719 121.446 36.6563 121.54 36.5311 121.65L36.1341 122L33.4888 121.32L34.3068 113.185H42.7768V116.767H37.4823ZM34.5697 120.565L35.2113 114.185H41.7767V115.767H36.5824L36.2221 119.177C36.474 119.03 36.7758 118.901 37.1273 118.79C37.4789 118.679 37.8861 118.623 38.349 118.623C38.9408 118.623 39.4711 118.726 39.9398 118.931C40.4086 119.136 40.807 119.426 41.1351 119.801C41.4633 120.17 41.7152 120.618 41.891 121.146C42.0668 121.673 42.1547 122.259 42.1547 122.903C42.1547 123.513 42.0726 124.078 41.9086 124.6C41.7445 125.121 41.4955 125.572 41.1615 125.953C40.8334 126.328 40.4174 126.624 39.9135 126.841C39.4096 127.052 38.8178 127.157 38.1381 127.157C37.6166 127.157 37.1244 127.084 36.6615 126.938C36.1986 126.791 35.7855 126.571 35.4223 126.278C35.0648 125.985 34.7689 125.616 34.5346 125.171C34.306 124.726 34.1625 124.207 34.1039 123.615H35.6508C35.7504 124.342 36.017 124.893 36.4506 125.268C36.89 125.643 37.4525 125.83 38.1381 125.83C38.5248 125.83 38.8676 125.763 39.1664 125.628C39.4652 125.487 39.7142 125.291 39.9135 125.039C40.1185 124.781 40.2709 124.474 40.3705 124.116C40.476 123.759 40.5287 123.36 40.5287 122.921C40.5287 122.522 40.4701 122.15 40.3529 121.805C40.2416 121.459 40.0775 121.16 39.8607 120.908C39.6439 120.65 39.3773 120.448 39.0609 120.302C38.7445 120.155 38.3812 120.082 37.9711 120.082C37.7016 120.082 37.4672 120.103 37.268 120.144C37.0746 120.179 36.8988 120.231 36.7406 120.302C36.5824 120.372 36.433 120.457 36.2924 120.557C36.1576 120.656 36.017 120.771 35.8705 120.899L34.5697 120.565Z" fill="white"/>
|
|
||||||
<path d="M90.2881 121.086C90.2881 121.9 90.1943 122.624 90.0068 123.257C89.8193 123.884 89.5498 124.414 89.1982 124.848C88.8467 125.275 88.416 125.601 87.9062 125.823C87.3965 126.046 86.8135 126.157 86.1572 126.157C85.5068 126.157 84.9238 126.046 84.4082 125.823C83.8984 125.601 83.4648 125.275 83.1074 124.848C82.75 124.414 82.4746 123.884 82.2812 123.257C82.0938 122.624 82 121.9 82 121.086V118.089C82 117.274 82.0938 116.554 82.2812 115.927C82.4688 115.294 82.7383 114.761 83.0898 114.327C83.4473 113.894 83.8809 113.565 84.3906 113.343C84.9062 113.114 85.4893 113 86.1396 113C86.7959 113 87.3789 113.114 87.8887 113.343C88.4043 113.565 88.8379 113.894 89.1895 114.327C89.5469 114.761 89.8193 115.294 90.0068 115.927C90.1943 116.554 90.2881 117.274 90.2881 118.089V121.086ZM83.6348 120.761L88.6182 116.938C88.5244 116.088 88.2754 115.443 87.8711 115.004C87.4727 114.559 86.8955 114.336 86.1396 114.336C85.2842 114.336 84.6514 114.626 84.2412 115.206C83.8369 115.78 83.6348 116.621 83.6348 117.729V120.761ZM88.6533 118.493L83.6787 122.299C83.7783 123.125 84.0332 123.755 84.4434 124.188C84.8535 124.622 85.4248 124.839 86.1572 124.839C87.0186 124.839 87.6484 124.546 88.0469 123.96C88.4512 123.374 88.6533 122.53 88.6533 121.429V118.493Z" fill="black"/>
|
|
||||||
<path fill-rule="evenodd" clip-rule="evenodd" d="M90.9656 123.541L90.9649 123.543C90.7463 124.274 90.4217 124.926 89.975 125.477L89.9708 125.483C89.5186 126.033 88.9601 126.454 88.3065 126.74C87.6499 127.026 86.9268 127.157 86.1572 127.157C85.3918 127.157 84.6708 127.026 84.0118 126.741L84.0079 126.74C83.3558 126.455 82.7967 126.035 82.3401 125.489L82.3358 125.484C81.8827 124.934 81.5511 124.283 81.3257 123.552L81.3224 123.541C81.1021 122.797 81 121.975 81 121.086V118.089C81 117.201 81.1019 116.381 81.3228 115.641C81.541 114.906 81.8653 114.25 82.3131 113.697L82.3182 113.691C82.774 113.138 83.3336 112.714 83.9879 112.427C84.6486 112.135 85.3719 112 86.1396 112C86.9101 112 87.6341 112.134 88.2914 112.427C88.9503 112.713 89.5116 113.138 89.9636 113.694C90.4184 114.247 90.7466 114.904 90.9653 115.641C91.1861 116.381 91.2881 117.201 91.2881 118.089V121.086C91.2881 121.975 91.186 122.797 90.9656 123.541ZM90.0068 115.927C89.8193 115.294 89.5469 114.761 89.1895 114.327C88.8379 113.894 88.4043 113.565 87.8887 113.343C87.3789 113.114 86.7959 113 86.1396 113C85.4893 113 84.9062 113.114 84.3906 113.343C83.8809 113.565 83.4473 113.894 83.0898 114.327C82.7383 114.761 82.4688 115.294 82.2812 115.927C82.0938 116.554 82 117.274 82 118.089V121.086C82 121.9 82.0938 122.624 82.2812 123.257C82.4746 123.884 82.75 124.414 83.1074 124.848C83.4648 125.275 83.8984 125.601 84.4082 125.823C84.9238 126.046 85.5068 126.157 86.1572 126.157C86.8135 126.157 87.3965 126.046 87.9062 125.823C88.416 125.601 88.8467 125.275 89.1982 124.848C89.5498 124.414 89.8193 123.884 90.0068 123.257C90.1943 122.624 90.2881 121.9 90.2881 121.086V118.089C90.2881 117.274 90.1943 116.554 90.0068 115.927ZM83.6787 122.299C83.7783 123.125 84.0332 123.755 84.4434 124.188C84.8535 124.622 85.4248 124.839 86.1572 124.839C87.0186 124.839 87.6484 124.546 88.0469 123.96C88.4512 123.374 88.6533 122.53 88.6533 121.429V118.493L83.6787 122.299ZM88.6182 116.938C88.5244 116.088 88.2754 115.443 87.8711 115.004C87.4727 114.559 86.8955 114.336 86.1396 114.336C85.2842 114.336 84.6514 114.626 84.2412 115.206C83.8369 115.78 83.6348 116.621 83.6348 117.729V120.761L88.6182 116.938ZM84.6348 118.733L87.5318 116.511C87.4323 116.106 87.2865 115.845 87.1352 115.681L87.1258 115.671C86.9649 115.491 86.6917 115.336 86.1396 115.336C85.5342 115.336 85.2414 115.524 85.0583 115.783C84.8235 116.117 84.6348 116.718 84.6348 117.729V118.733ZM87.6533 120.517V121.429C87.6533 122.431 87.4656 123.042 87.2238 123.392L87.2199 123.398C87.0492 123.649 86.7688 123.839 86.1572 123.839C85.6327 123.839 85.3496 123.691 85.1698 123.501C85.0184 123.341 84.8745 123.095 84.7734 122.72L87.6533 120.517Z" fill="white"/>
|
|
||||||
<defs>
|
|
||||||
<filter id="filter0_dddd" x="57.636" y="139" width="16.7279" height="20" filterUnits="userSpaceOnUse" color-interpolation-filters="sRGB">
|
|
||||||
<feFlood flood-opacity="0" result="BackgroundImageFix"/>
|
|
||||||
<feColorMatrix in="SourceAlpha" type="matrix" values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 127 0"/>
|
|
||||||
<feOffset dy="-1"/>
|
|
||||||
<feColorMatrix type="matrix" values="0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0"/>
|
|
||||||
<feBlend mode="normal" in2="BackgroundImageFix" result="effect1_dropShadow"/>
|
|
||||||
<feColorMatrix in="SourceAlpha" type="matrix" values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 127 0"/>
|
|
||||||
<feOffset dy="1"/>
|
|
||||||
<feColorMatrix type="matrix" values="0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0"/>
|
|
||||||
<feBlend mode="normal" in2="effect1_dropShadow" result="effect2_dropShadow"/>
|
|
||||||
<feColorMatrix in="SourceAlpha" type="matrix" values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 127 0"/>
|
|
||||||
<feOffset dx="1"/>
|
|
||||||
<feColorMatrix type="matrix" values="0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0"/>
|
|
||||||
<feBlend mode="normal" in2="effect2_dropShadow" result="effect3_dropShadow"/>
|
|
||||||
<feColorMatrix in="SourceAlpha" type="matrix" values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 127 0"/>
|
|
||||||
<feOffset dx="-1"/>
|
|
||||||
<feColorMatrix type="matrix" values="0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0"/>
|
|
||||||
<feBlend mode="normal" in2="effect3_dropShadow" result="effect4_dropShadow"/>
|
|
||||||
<feBlend mode="normal" in="SourceGraphic" in2="effect4_dropShadow" result="shape"/>
|
|
||||||
</filter>
|
|
||||||
<filter id="filter1_dddd" x="77.636" y="79.3128" width="38.1097" height="22.5" filterUnits="userSpaceOnUse" color-interpolation-filters="sRGB">
|
|
||||||
<feFlood flood-opacity="0" result="BackgroundImageFix"/>
|
|
||||||
<feColorMatrix in="SourceAlpha" type="matrix" values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 127 0"/>
|
|
||||||
<feOffset dy="-1"/>
|
|
||||||
<feColorMatrix type="matrix" values="0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0"/>
|
|
||||||
<feBlend mode="normal" in2="BackgroundImageFix" result="effect1_dropShadow"/>
|
|
||||||
<feColorMatrix in="SourceAlpha" type="matrix" values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 127 0"/>
|
|
||||||
<feOffset dy="1"/>
|
|
||||||
<feColorMatrix type="matrix" values="0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0"/>
|
|
||||||
<feBlend mode="normal" in2="effect1_dropShadow" result="effect2_dropShadow"/>
|
|
||||||
<feColorMatrix in="SourceAlpha" type="matrix" values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 127 0"/>
|
|
||||||
<feOffset dx="1"/>
|
|
||||||
<feColorMatrix type="matrix" values="0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0"/>
|
|
||||||
<feBlend mode="normal" in2="effect2_dropShadow" result="effect3_dropShadow"/>
|
|
||||||
<feColorMatrix in="SourceAlpha" type="matrix" values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 127 0"/>
|
|
||||||
<feOffset dx="-1"/>
|
|
||||||
<feColorMatrix type="matrix" values="0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0"/>
|
|
||||||
<feBlend mode="normal" in2="effect3_dropShadow" result="effect4_dropShadow"/>
|
|
||||||
<feBlend mode="normal" in="SourceGraphic" in2="effect4_dropShadow" result="shape"/>
|
|
||||||
</filter>
|
|
||||||
<filter id="filter2_dddd" x="34.6457" y="79.3128" width="38.1097" height="22.5" filterUnits="userSpaceOnUse" color-interpolation-filters="sRGB">
|
|
||||||
<feFlood flood-opacity="0" result="BackgroundImageFix"/>
|
|
||||||
<feColorMatrix in="SourceAlpha" type="matrix" values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 127 0"/>
|
|
||||||
<feOffset dy="-1"/>
|
|
||||||
<feColorMatrix type="matrix" values="0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0"/>
|
|
||||||
<feBlend mode="normal" in2="BackgroundImageFix" result="effect1_dropShadow"/>
|
|
||||||
<feColorMatrix in="SourceAlpha" type="matrix" values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 127 0"/>
|
|
||||||
<feOffset dy="1"/>
|
|
||||||
<feColorMatrix type="matrix" values="0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0"/>
|
|
||||||
<feBlend mode="normal" in2="effect1_dropShadow" result="effect2_dropShadow"/>
|
|
||||||
<feColorMatrix in="SourceAlpha" type="matrix" values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 127 0"/>
|
|
||||||
<feOffset dx="1"/>
|
|
||||||
<feColorMatrix type="matrix" values="0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0"/>
|
|
||||||
<feBlend mode="normal" in2="effect2_dropShadow" result="effect3_dropShadow"/>
|
|
||||||
<feColorMatrix in="SourceAlpha" type="matrix" values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 127 0"/>
|
|
||||||
<feOffset dx="-1"/>
|
|
||||||
<feColorMatrix type="matrix" values="0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0"/>
|
|
||||||
<feBlend mode="normal" in2="effect3_dropShadow" result="effect4_dropShadow"/>
|
|
||||||
<feBlend mode="normal" in="SourceGraphic" in2="effect4_dropShadow" result="shape"/>
|
|
||||||
</filter>
|
|
||||||
</defs>
|
|
||||||
</svg>
|
|
||||||
|
Before Width: | Height: | Size: 56 KiB |
|
Before Width: | Height: | Size: 55 KiB |
|
Before Width: | Height: | Size: 67 KiB |
@@ -1,91 +0,0 @@
|
|||||||
<svg width="81" height="184" viewBox="0 0 81 184" fill="none" xmlns="http://www.w3.org/2000/svg">
|
|
||||||
<path d="M65.4492 33H60.5098V13.3652L54.041 15.6855V11.4316L65.1855 7.40625H65.4492V33Z" fill="#C84646"/>
|
|
||||||
<path fill-rule="evenodd" clip-rule="evenodd" d="M66.4492 34H59.5098V14.7863L53.041 17.1066V10.7296L65.0105 6.40625H66.4492V34ZM60.5098 13.3652V33H65.4492V7.40625H65.1855L54.041 11.4316V15.6855L60.5098 13.3652Z" fill="white"/>
|
|
||||||
<path d="M69.6328 45.8145H53.6016V42H69.6328V45.8145Z" fill="black"/>
|
|
||||||
<path fill-rule="evenodd" clip-rule="evenodd" d="M70.6328 46.8145H52.6016V41H70.6328V46.8145ZM69.6328 45.8145V42H53.6016V45.8145H69.6328Z" fill="white"/>
|
|
||||||
<path d="M63.8027 68H62.1768V57.2773L58.8281 58.5518V57.0664L63.6709 55.2031H63.8027V68Z" fill="black"/>
|
|
||||||
<path fill-rule="evenodd" clip-rule="evenodd" d="M64.8027 69H61.1768V58.7279L57.8281 60.0023V56.3797L63.4852 54.2031H64.8027V69ZM62.1768 57.2773V68H63.8027V55.2031H63.6709L58.8281 57.0664V58.5518L62.1768 57.2773Z" fill="white"/>
|
|
||||||
<path d="M22.4492 33H17.5098V13.3652L11.041 15.6855V11.4316L22.1855 7.40625H22.4492V33Z" fill="#C84646"/>
|
|
||||||
<path fill-rule="evenodd" clip-rule="evenodd" d="M23.4492 34H16.5098V14.7863L10.041 17.1066V10.7296L22.0105 6.40625H23.4492V34ZM17.5098 13.3652V33H22.4492V7.40625H22.1855L11.041 11.4316V15.6855L17.5098 13.3652Z" fill="white"/>
|
|
||||||
<path d="M26.6328 45.8145H10.6016V42H26.6328V45.8145Z" fill="black"/>
|
|
||||||
<path fill-rule="evenodd" clip-rule="evenodd" d="M27.6328 46.8145H9.60156V41H27.6328V46.8145ZM26.6328 45.8145V42H10.6016V45.8145H26.6328Z" fill="white"/>
|
|
||||||
<path d="M23.3779 68H14.9932V66.8311L19.1855 62.1729C19.5605 61.7568 19.874 61.3877 20.126 61.0654C20.3779 60.7432 20.5801 60.4473 20.7324 60.1777C20.8848 59.9023 20.9932 59.6445 21.0576 59.4043C21.1221 59.1582 21.1543 58.9062 21.1543 58.6484C21.1543 58.332 21.1016 58.0361 20.9961 57.7607C20.8965 57.4795 20.7471 57.2363 20.5479 57.0312C20.3545 56.8262 20.1172 56.665 19.8359 56.5479C19.5605 56.4248 19.2471 56.3633 18.8955 56.3633C18.4678 56.3633 18.0957 56.4248 17.7793 56.5479C17.4688 56.6709 17.208 56.8467 16.9971 57.0752C16.792 57.2979 16.6367 57.5703 16.5312 57.8926C16.4316 58.2148 16.3818 58.5752 16.3818 58.9736H14.7471C14.7471 58.4346 14.8408 57.9277 15.0283 57.4531C15.2158 56.9727 15.4854 56.5537 15.8369 56.1963C16.1943 55.8389 16.6279 55.5547 17.1377 55.3438C17.6533 55.1328 18.2393 55.0273 18.8955 55.0273C19.499 55.0273 20.041 55.1182 20.5215 55.2998C21.0078 55.4756 21.418 55.7217 21.752 56.0381C22.0859 56.3545 22.3408 56.7295 22.5166 57.1631C22.6982 57.5967 22.7891 58.0684 22.7891 58.5781C22.7891 58.959 22.7246 59.3369 22.5957 59.7119C22.4668 60.0811 22.291 60.4473 22.0684 60.8105C21.8516 61.1738 21.5967 61.5342 21.3037 61.8916C21.0166 62.2432 20.7119 62.5947 20.3896 62.9463L16.9531 66.6729H23.3779V68Z" fill="black"/>
|
|
||||||
<path fill-rule="evenodd" clip-rule="evenodd" d="M24.3779 69H13.9932V66.4473L18.4423 61.5039C18.8069 61.0994 19.1047 60.7481 19.3382 60.4495C19.5672 60.1566 19.7382 59.9038 19.8596 59.6896C19.9804 59.4707 20.0523 59.291 20.091 59.148C20.133 58.9867 20.1543 58.8209 20.1543 58.6484C20.1543 58.4453 20.1209 58.2715 20.0622 58.1184L20.0577 58.1065L20.0535 58.0946C19.9998 57.9431 19.925 57.8253 19.8306 57.728L19.8254 57.7227L19.8203 57.7173C19.7309 57.6225 19.6135 57.5385 19.4513 57.4709L19.4396 57.466L19.428 57.4609C19.3005 57.4039 19.1296 57.3633 18.8955 57.3633C18.5627 57.3633 18.3196 57.4112 18.1446 57.4787C17.9648 57.5504 17.8335 57.6435 17.7323 57.753C17.6367 57.8569 17.5501 57.9976 17.4842 58.1958C17.4204 58.4055 17.3818 58.6616 17.3818 58.9736V59.9736H13.7471V58.9736C13.7471 58.3167 13.8617 57.6852 14.0975 57.0877C14.3328 56.4855 14.6751 55.9514 15.124 55.495L15.1298 55.4892C15.5883 55.0306 16.1353 54.6763 16.7553 54.4197L16.7591 54.4182C17.4142 54.1502 18.1321 54.0273 18.8955 54.0273C19.5965 54.0273 20.2588 54.1325 20.8682 54.3618C21.4652 54.5785 21.9958 54.8916 22.4397 55.3121C22.8779 55.7273 23.2127 56.2205 23.4412 56.7821C23.6767 57.3465 23.7891 57.949 23.7891 58.5781C23.7891 59.0741 23.7048 59.5617 23.5414 60.037L23.5398 60.0416C23.386 60.482 23.1793 60.9109 22.9241 61.328C22.6805 61.7356 22.3977 62.1344 22.0777 62.5248C21.7781 62.8916 21.4611 63.2573 21.1268 63.622L21.1248 63.6242L19.2356 65.6729H24.3779V69ZM16.9531 66.6729L20.3896 62.9463C20.7119 62.5947 21.0166 62.2432 21.3037 61.8916C21.5967 61.5342 21.8516 61.1738 22.0684 60.8105C22.291 60.4473 22.4668 60.0811 22.5957 59.7119C22.7246 59.3369 22.7891 58.959 22.7891 58.5781C22.7891 58.0684 22.6982 57.5967 22.5166 57.1631C22.3408 56.7295 22.0859 56.3545 21.752 56.0381C21.418 55.7217 21.0078 55.4756 20.5215 55.2998C20.041 55.1182 19.499 55.0273 18.8955 55.0273C18.2393 55.0273 17.6533 55.1328 17.1377 55.3438C16.6279 55.5547 16.1943 55.8389 15.8369 56.1963C15.4854 56.5537 15.2158 56.9727 15.0283 57.4531C14.9614 57.6225 14.9064 57.796 14.8634 57.9736C14.7858 58.2936 14.7471 58.627 14.7471 58.9736H16.3818C16.3818 58.5752 16.4316 58.2148 16.5312 57.8926C16.6367 57.5703 16.792 57.2979 16.9971 57.0752C17.208 56.8467 17.4688 56.6709 17.7793 56.5479C18.0957 56.4248 18.4678 56.3633 18.8955 56.3633C19.2471 56.3633 19.5605 56.4248 19.8359 56.5479C20.1172 56.665 20.3545 56.8262 20.5479 57.0312C20.7471 57.2363 20.8965 57.4795 20.9961 57.7607C21.1016 58.0361 21.1543 58.332 21.1543 58.6484C21.1543 58.9062 21.1221 59.1582 21.0576 59.4043C20.9932 59.6445 20.8848 59.9023 20.7324 60.1777C20.5801 60.4473 20.3779 60.7432 20.126 61.0654C19.874 61.3877 19.5605 61.7568 19.1855 62.1729L14.9932 66.8311V68H23.3779V66.6729H16.9531Z" fill="white"/>
|
|
||||||
<g filter="url(#filter0_dddd)">
|
|
||||||
<path fill-rule="evenodd" clip-rule="evenodd" d="M26.0711 92.3431L19.7071 98.7071C19.3166 99.0976 18.6834 99.0976 18.2929 98.7071L11.9289 92.3431C11.5384 91.9526 11.5384 91.3195 11.9289 90.9289C12.3194 90.5384 12.9526 90.5384 13.3431 90.9289L18 95.5858L18 81L20 81L20 95.5858L24.6568 90.9289C25.0474 90.5384 25.6805 90.5384 26.0711 90.9289C26.4616 91.3195 26.4616 91.9526 26.0711 92.3431Z" fill="black"/>
|
|
||||||
</g>
|
|
||||||
<g filter="url(#filter1_dddd)">
|
|
||||||
<path fill-rule="evenodd" clip-rule="evenodd" d="M69.0711 92.3431L62.7071 98.7071C62.3166 99.0976 61.6834 99.0976 61.2929 98.7071L54.9289 92.3431C54.5384 91.9526 54.5384 91.3195 54.9289 90.9289C55.3194 90.5384 55.9526 90.5384 56.3431 90.9289L61 95.5858L61 81L63 81L63 95.5858L67.6568 90.9289C68.0474 90.5384 68.6805 90.5384 69.0711 90.9289C69.4616 91.3195 69.4616 91.9526 69.0711 92.3431Z" fill="black"/>
|
|
||||||
</g>
|
|
||||||
<path d="M38.4277 172.819H39.5879C39.998 172.819 40.3584 172.764 40.6689 172.652C40.9854 172.541 41.249 172.389 41.46 172.195C41.6768 172.002 41.8408 171.771 41.9521 171.501C42.0635 171.231 42.1191 170.936 42.1191 170.613C42.1191 169.869 41.9287 169.31 41.5479 168.935C41.167 168.554 40.6104 168.363 39.8779 168.363C39.5322 168.363 39.2158 168.416 38.9287 168.521C38.6475 168.621 38.4043 168.768 38.1992 168.961C38 169.154 37.8447 169.386 37.7334 169.655C37.6221 169.925 37.5664 170.227 37.5664 170.561H35.9316C35.9316 170.074 36.0254 169.617 36.2129 169.189C36.4062 168.756 36.6758 168.381 37.0215 168.064C37.3672 167.742 37.7803 167.49 38.2607 167.309C38.7471 167.121 39.2861 167.027 39.8779 167.027C40.4521 167.027 40.9766 167.106 41.4512 167.265C41.9258 167.417 42.333 167.646 42.6729 167.95C43.0127 168.255 43.2764 168.633 43.4639 169.084C43.6514 169.535 43.7451 170.057 43.7451 170.648C43.7451 170.895 43.707 171.149 43.6309 171.413C43.5547 171.677 43.4375 171.935 43.2793 172.187C43.1211 172.433 42.916 172.667 42.6641 172.89C42.418 173.106 42.1221 173.288 41.7764 173.435C42.1924 173.569 42.5381 173.745 42.8135 173.962C43.0947 174.179 43.3174 174.422 43.4814 174.691C43.6514 174.961 43.7686 175.245 43.833 175.544C43.9033 175.843 43.9385 176.139 43.9385 176.432C43.9385 177.029 43.8359 177.56 43.6309 178.022C43.4258 178.485 43.1416 178.878 42.7783 179.2C42.415 179.517 41.9844 179.76 41.4863 179.93C40.9941 180.094 40.4609 180.176 39.8867 180.176C39.3242 180.176 38.7939 180.097 38.2959 179.938C37.8037 179.78 37.376 179.549 37.0127 179.244C36.6494 178.939 36.3594 178.567 36.1426 178.128C35.9316 177.688 35.8262 177.188 35.8262 176.625H37.4521C37.4521 176.959 37.5078 177.264 37.6191 177.539C37.7363 177.814 37.9004 178.049 38.1113 178.242C38.3223 178.436 38.5771 178.585 38.876 178.69C39.1807 178.796 39.5176 178.849 39.8867 178.849C40.2559 178.849 40.5898 178.802 40.8887 178.708C41.1875 178.608 41.4424 178.459 41.6533 178.26C41.8643 178.061 42.0254 177.814 42.1367 177.521C42.2539 177.223 42.3125 176.871 42.3125 176.467C42.3125 176.068 42.2451 175.726 42.1104 175.438C41.9814 175.146 41.7969 174.902 41.5566 174.709C41.3223 174.516 41.0352 174.372 40.6953 174.278C40.3613 174.185 39.9922 174.138 39.5879 174.138H38.4277V172.819Z" fill="#001AFF"/>
|
|
||||||
<path fill-rule="evenodd" clip-rule="evenodd" d="M37.4277 171.819H39.5879C39.9099 171.819 40.1519 171.775 40.3315 171.711L40.337 171.709C40.5477 171.635 40.6884 171.546 40.7842 171.458L40.7943 171.449C40.898 171.356 40.9739 171.25 41.0279 171.119C41.0842 170.983 41.1191 170.818 41.1191 170.613C41.1191 170.03 40.9714 169.77 40.8462 169.647L40.8407 169.642C40.7068 169.508 40.443 169.363 39.8779 169.363C39.6347 169.363 39.4368 169.4 39.2735 169.46L39.2626 169.464C39.1074 169.519 38.9876 169.593 38.8905 169.684C38.7966 169.776 38.7184 169.89 38.6577 170.037C38.6031 170.169 38.5664 170.339 38.5664 170.561V171.561H34.9316V170.561C34.9316 169.942 35.0517 169.348 35.297 168.788L35.2996 168.782C35.5474 168.226 35.8963 167.739 36.343 167.33C36.7903 166.914 37.3153 166.597 37.9041 166.374C38.5188 166.138 39.1808 166.027 39.8779 166.027C40.542 166.027 41.1732 166.119 41.7621 166.314C42.356 166.506 42.8879 166.8 43.3404 167.206C43.7991 167.617 44.1466 168.121 44.3873 168.7C44.6348 169.296 44.7451 169.952 44.7451 170.648C44.7451 170.999 44.6908 171.347 44.5916 171.691C44.4874 172.051 44.3299 172.394 44.1262 172.718L44.1205 172.727C43.9803 172.946 43.817 173.15 43.634 173.343C43.9077 173.584 44.1432 173.857 44.3315 174.165C44.5573 174.524 44.7185 174.912 44.8085 175.324C44.8943 175.691 44.9385 176.061 44.9385 176.432C44.9385 177.144 44.816 177.816 44.5451 178.428C44.2846 179.016 43.917 179.527 43.4419 179.948L43.4351 179.954C42.9654 180.363 42.4186 180.668 41.8092 180.876L41.8026 180.878C41.1981 181.08 40.557 181.176 39.8867 181.176C39.2293 181.176 38.5963 181.083 37.9932 180.892L37.9899 180.891C37.3857 180.696 36.8411 180.405 36.3701 180.01C35.8969 179.614 35.5218 179.13 35.2458 178.57L35.241 178.561C34.956 177.967 34.8262 177.314 34.8262 176.625V175.625H38.4521V176.625C38.4521 176.842 38.4873 177.015 38.5429 177.156C38.6064 177.302 38.6881 177.414 38.7871 177.505C38.888 177.598 39.0219 177.681 39.2059 177.746C39.3908 177.81 39.6144 177.849 39.8867 177.849C40.1676 177.849 40.3959 177.813 40.5808 177.757C40.7492 177.699 40.872 177.622 40.9667 177.533C41.0593 177.445 41.1398 177.33 41.2019 177.166L41.2057 177.156C41.2671 177 41.3125 176.777 41.3125 176.467C41.3125 176.179 41.2636 175.988 41.2051 175.863L41.1999 175.852L41.195 175.841C41.1282 175.689 41.0402 175.577 40.9296 175.488L40.9202 175.48C40.8104 175.39 40.6551 175.305 40.4294 175.242L40.4251 175.241C40.1921 175.176 39.9155 175.138 39.5879 175.138H37.4277V171.819ZM38.876 178.69C38.5771 178.585 38.3223 178.436 38.1113 178.242C37.9004 178.049 37.7363 177.814 37.6191 177.539C37.5078 177.264 37.4521 176.959 37.4521 176.625H35.8262C35.8262 176.983 35.869 177.317 35.9545 177.625C36.0033 177.801 36.066 177.968 36.1426 178.128C36.3594 178.567 36.6494 178.939 37.0127 179.244C37.376 179.549 37.8037 179.78 38.2959 179.938C38.7939 180.097 39.3242 180.176 39.8867 180.176C40.4609 180.176 40.9941 180.094 41.4863 179.93C41.9844 179.76 42.415 179.517 42.7783 179.2C43.1416 178.878 43.4258 178.485 43.6309 178.022C43.8359 177.56 43.9385 177.029 43.9385 176.432C43.9385 176.139 43.9033 175.843 43.833 175.544C43.7686 175.245 43.6514 174.961 43.4814 174.691C43.3255 174.435 43.1166 174.203 42.8547 173.994C42.8411 173.983 42.8274 173.973 42.8135 173.962C42.5381 173.745 42.1924 173.569 41.7764 173.435C42.1221 173.288 42.418 173.106 42.6641 172.89C42.7082 172.851 42.7508 172.811 42.7921 172.772C42.9864 172.585 43.1488 172.39 43.2793 172.187C43.4375 171.935 43.5547 171.677 43.6309 171.413C43.707 171.149 43.7451 170.895 43.7451 170.648C43.7451 170.057 43.6514 169.535 43.4639 169.084C43.2764 168.633 43.0127 168.255 42.6729 167.95C42.333 167.646 41.9258 167.417 41.4512 167.265C40.9766 167.106 40.4521 167.027 39.8779 167.027C39.2861 167.027 38.7471 167.121 38.2607 167.309C37.7803 167.49 37.3672 167.742 37.0215 168.064C36.6758 168.381 36.4062 168.756 36.2129 169.189C36.1597 169.311 36.1141 169.434 36.076 169.561C35.9797 169.879 35.9316 170.212 35.9316 170.561H37.5664C37.5664 170.227 37.6221 169.925 37.7334 169.655C37.8447 169.386 38 169.154 38.1992 168.961C38.4043 168.768 38.6475 168.621 38.9287 168.521C39.2158 168.416 39.5322 168.363 39.8779 168.363C40.6104 168.363 41.167 168.554 41.5479 168.935C41.9287 169.31 42.1191 169.869 42.1191 170.613C42.1191 170.936 42.0635 171.231 41.9521 171.501C41.8408 171.771 41.6768 172.002 41.46 172.195C41.249 172.389 40.9854 172.541 40.6689 172.652C40.3584 172.764 39.998 172.819 39.5879 172.819H38.4277V174.138H39.5879C39.9922 174.138 40.3613 174.185 40.6953 174.278C41.0352 174.372 41.3223 174.516 41.5566 174.709C41.7969 174.902 41.9814 175.146 42.1104 175.438C42.2451 175.726 42.3125 176.068 42.3125 176.467C42.3125 176.871 42.2539 177.223 42.1367 177.521C42.0254 177.814 41.8643 178.061 41.6533 178.26C41.4424 178.459 41.1875 178.608 40.8887 178.708C40.5898 178.802 40.2559 178.849 39.8867 178.849C39.5176 178.849 39.1807 178.796 38.876 178.69Z" fill="white"/>
|
|
||||||
<path d="M23.3779 124H14.9932V122.831L19.1855 118.173C19.5605 117.757 19.874 117.388 20.126 117.065C20.3779 116.743 20.5801 116.447 20.7324 116.178C20.8848 115.902 20.9932 115.645 21.0576 115.404C21.1221 115.158 21.1543 114.906 21.1543 114.648C21.1543 114.332 21.1016 114.036 20.9961 113.761C20.8965 113.479 20.7471 113.236 20.5479 113.031C20.3545 112.826 20.1172 112.665 19.8359 112.548C19.5605 112.425 19.2471 112.363 18.8955 112.363C18.4678 112.363 18.0957 112.425 17.7793 112.548C17.4688 112.671 17.208 112.847 16.9971 113.075C16.792 113.298 16.6367 113.57 16.5312 113.893C16.4316 114.215 16.3818 114.575 16.3818 114.974H14.7471C14.7471 114.435 14.8408 113.928 15.0283 113.453C15.2158 112.973 15.4854 112.554 15.8369 112.196C16.1943 111.839 16.6279 111.555 17.1377 111.344C17.6533 111.133 18.2393 111.027 18.8955 111.027C19.499 111.027 20.041 111.118 20.5215 111.3C21.0078 111.476 21.418 111.722 21.752 112.038C22.0859 112.354 22.3408 112.729 22.5166 113.163C22.6982 113.597 22.7891 114.068 22.7891 114.578C22.7891 114.959 22.7246 115.337 22.5957 115.712C22.4668 116.081 22.291 116.447 22.0684 116.811C21.8516 117.174 21.5967 117.534 21.3037 117.892C21.0166 118.243 20.7119 118.595 20.3896 118.946L16.9531 122.673H23.3779V124Z" fill="black"/>
|
|
||||||
<path fill-rule="evenodd" clip-rule="evenodd" d="M24.3779 125H13.9932V122.447L18.4423 117.504C18.8069 117.099 19.1047 116.748 19.3382 116.45C19.5672 116.157 19.7382 115.904 19.8596 115.69C19.9804 115.471 20.0523 115.291 20.091 115.148C20.133 114.987 20.1543 114.821 20.1543 114.648C20.1543 114.445 20.1209 114.272 20.0622 114.118L20.0577 114.107L20.0535 114.095C19.9998 113.943 19.925 113.825 19.8306 113.728L19.8254 113.723L19.8203 113.717C19.7309 113.622 19.6135 113.539 19.4513 113.471L19.4396 113.466L19.428 113.461C19.3005 113.404 19.1296 113.363 18.8955 113.363C18.5627 113.363 18.3196 113.411 18.1446 113.479C17.9648 113.55 17.8335 113.644 17.7323 113.753C17.6367 113.857 17.5501 113.998 17.4842 114.196C17.4204 114.405 17.3818 114.662 17.3818 114.974V115.974H13.7471V114.974C13.7471 114.317 13.8617 113.685 14.0975 113.088C14.3328 112.485 14.6751 111.951 15.124 111.495L15.1298 111.489C15.5883 111.031 16.1353 110.676 16.7553 110.42L16.7591 110.418C17.4142 110.15 18.1321 110.027 18.8955 110.027C19.5965 110.027 20.2588 110.133 20.8682 110.362C21.4652 110.579 21.9958 110.892 22.4397 111.312C22.8779 111.727 23.2127 112.221 23.4412 112.782C23.6767 113.347 23.7891 113.949 23.7891 114.578C23.7891 115.074 23.7048 115.562 23.5414 116.037L23.5398 116.042C23.386 116.482 23.1793 116.911 22.9241 117.328C22.6805 117.736 22.3977 118.134 22.0777 118.525C21.7781 118.892 21.4611 119.257 21.1268 119.622L21.1248 119.624L19.2356 121.673H24.3779V125ZM16.9531 122.673L20.3896 118.946C20.7119 118.595 21.0166 118.243 21.3037 117.892C21.5967 117.534 21.8516 117.174 22.0684 116.811C22.291 116.447 22.4668 116.081 22.5957 115.712C22.7246 115.337 22.7891 114.959 22.7891 114.578C22.7891 114.068 22.6982 113.597 22.5166 113.163C22.3408 112.729 22.0859 112.354 21.752 112.038C21.418 111.722 21.0078 111.476 20.5215 111.3C20.041 111.118 19.499 111.027 18.8955 111.027C18.2393 111.027 17.6533 111.133 17.1377 111.344C16.6279 111.555 16.1943 111.839 15.8369 112.196C15.4854 112.554 15.2158 112.973 15.0283 113.453C14.9614 113.623 14.9064 113.796 14.8634 113.974C14.7858 114.294 14.7471 114.627 14.7471 114.974H16.3818C16.3818 114.575 16.4316 114.215 16.5312 113.893C16.6367 113.57 16.792 113.298 16.9971 113.075C17.208 112.847 17.4688 112.671 17.7793 112.548C18.0957 112.425 18.4678 112.363 18.8955 112.363C19.2471 112.363 19.5605 112.425 19.8359 112.548C20.1172 112.665 20.3545 112.826 20.5479 113.031C20.7471 113.236 20.8965 113.479 20.9961 113.761C21.1016 114.036 21.1543 114.332 21.1543 114.648C21.1543 114.906 21.1221 115.158 21.0576 115.404C20.9932 115.645 20.8848 115.902 20.7324 116.178C20.5801 116.447 20.3779 116.743 20.126 117.065C19.874 117.388 19.5605 117.757 19.1855 118.173L14.9932 122.831V124H23.3779V122.673H16.9531Z" fill="white"/>
|
|
||||||
<path d="M63.8027 124H62.1768V113.277L58.8281 114.552V113.066L63.6709 111.203H63.8027V124Z" fill="black"/>
|
|
||||||
<path fill-rule="evenodd" clip-rule="evenodd" d="M64.8027 125H61.1768V114.728L57.8281 116.002V112.38L63.4852 110.203H64.8027V125ZM62.1768 113.277V124H63.8027V111.203H63.6709L58.8281 113.066V114.552L62.1768 113.277Z" fill="white"/>
|
|
||||||
<g filter="url(#filter2_dddd)">
|
|
||||||
<path fill-rule="evenodd" clip-rule="evenodd" d="M16.7457 137.097C16.7457 137.065 16.7457 137.033 16.7457 137H18.7457C18.7457 139.163 18.7491 140.625 18.9236 141.671C19.0895 142.667 19.3762 143.076 19.7995 143.335C20.3275 143.658 21.2424 143.861 22.9653 143.947C24.2771 144.012 25.9285 144.008 28.0469 144.003C28.658 144.002 29.3081 144 30 144H30.072C32.6359 144 34.654 144 36.191 144.187C37.7442 144.376 39.0253 144.777 39.9259 145.763C40.1848 146.047 40.3981 146.364 40.5746 146.712C40.7511 146.364 40.9644 146.047 41.2234 145.763C42.1239 144.777 43.405 144.376 44.9582 144.187C46.4952 144 48.5133 144 51.0773 144H51.1492C51.8428 144 52.4929 144.002 53.1028 144.003C55.211 144.008 56.8387 144.012 58.1197 143.947C59.8092 143.86 60.6555 143.657 61.1219 143.351C61.4849 143.113 61.7436 142.726 61.8804 141.703C62.0048 140.774 62.0031 139.535 62.0007 137.786C62.0004 137.535 62 137.273 62 137H64C64 137.269 64.0005 137.53 64.0009 137.785C64.004 139.499 64.0064 140.894 63.8627 141.969C63.6922 143.243 63.2859 144.324 62.218 145.024C61.2535 145.656 59.903 145.858 58.2216 145.944C56.8822 146.012 55.1798 146.008 53.0572 146.003C52.4554 146.002 51.8199 146 51.1492 146C48.4976 146 46.6016 146.002 45.1998 146.172C43.8 146.343 43.1123 146.661 42.7003 147.112C42.271 147.582 41.9675 148.383 41.8082 149.953C41.7015 151.004 41.6664 152.303 41.6549 153.931L46.1568 149.429C46.3711 149.215 46.6584 149.118 46.9386 149.139C47.2188 149.118 47.506 149.215 47.7203 149.429C48.1108 149.819 48.1108 150.453 47.7203 150.843L41.3563 157.207C41.1421 157.421 40.8548 157.518 40.5746 157.497C40.2944 157.518 40.0071 157.421 39.7929 157.207L33.4289 150.843C33.0384 150.453 33.0384 149.819 33.4289 149.429C33.6432 149.215 33.9305 149.118 34.2106 149.139C34.4908 149.118 34.7781 149.215 34.9924 149.429L39.4943 153.931C39.4828 152.303 39.4477 151.004 39.341 149.953C39.1817 148.383 38.8782 147.582 38.4489 147.112C38.0369 146.661 37.3492 146.343 35.9494 146.172C34.5476 146.002 32.6516 146 30 146C29.3303 146 28.6943 146.002 28.0911 146.003C25.959 146.008 24.2346 146.012 22.8657 145.944C21.1421 145.858 19.7593 145.655 18.7555 145.04C17.647 144.362 17.1679 143.302 16.9508 142C16.7456 140.77 16.7457 139.139 16.7457 137.097Z" fill="black"/>
|
|
||||||
</g>
|
|
||||||
<defs>
|
|
||||||
<filter id="filter0_dddd" x="10.636" y="80" width="16.7279" height="20" filterUnits="userSpaceOnUse" color-interpolation-filters="sRGB">
|
|
||||||
<feFlood flood-opacity="0" result="BackgroundImageFix"/>
|
|
||||||
<feColorMatrix in="SourceAlpha" type="matrix" values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 127 0"/>
|
|
||||||
<feOffset dy="-1"/>
|
|
||||||
<feColorMatrix type="matrix" values="0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0"/>
|
|
||||||
<feBlend mode="normal" in2="BackgroundImageFix" result="effect1_dropShadow"/>
|
|
||||||
<feColorMatrix in="SourceAlpha" type="matrix" values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 127 0"/>
|
|
||||||
<feOffset dy="1"/>
|
|
||||||
<feColorMatrix type="matrix" values="0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0"/>
|
|
||||||
<feBlend mode="normal" in2="effect1_dropShadow" result="effect2_dropShadow"/>
|
|
||||||
<feColorMatrix in="SourceAlpha" type="matrix" values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 127 0"/>
|
|
||||||
<feOffset dx="1"/>
|
|
||||||
<feColorMatrix type="matrix" values="0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0"/>
|
|
||||||
<feBlend mode="normal" in2="effect2_dropShadow" result="effect3_dropShadow"/>
|
|
||||||
<feColorMatrix in="SourceAlpha" type="matrix" values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 127 0"/>
|
|
||||||
<feOffset dx="-1"/>
|
|
||||||
<feColorMatrix type="matrix" values="0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0"/>
|
|
||||||
<feBlend mode="normal" in2="effect3_dropShadow" result="effect4_dropShadow"/>
|
|
||||||
<feBlend mode="normal" in="SourceGraphic" in2="effect4_dropShadow" result="shape"/>
|
|
||||||
</filter>
|
|
||||||
<filter id="filter1_dddd" x="53.636" y="80" width="16.7279" height="20" filterUnits="userSpaceOnUse" color-interpolation-filters="sRGB">
|
|
||||||
<feFlood flood-opacity="0" result="BackgroundImageFix"/>
|
|
||||||
<feColorMatrix in="SourceAlpha" type="matrix" values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 127 0"/>
|
|
||||||
<feOffset dy="-1"/>
|
|
||||||
<feColorMatrix type="matrix" values="0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0"/>
|
|
||||||
<feBlend mode="normal" in2="BackgroundImageFix" result="effect1_dropShadow"/>
|
|
||||||
<feColorMatrix in="SourceAlpha" type="matrix" values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 127 0"/>
|
|
||||||
<feOffset dy="1"/>
|
|
||||||
<feColorMatrix type="matrix" values="0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0"/>
|
|
||||||
<feBlend mode="normal" in2="effect1_dropShadow" result="effect2_dropShadow"/>
|
|
||||||
<feColorMatrix in="SourceAlpha" type="matrix" values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 127 0"/>
|
|
||||||
<feOffset dx="1"/>
|
|
||||||
<feColorMatrix type="matrix" values="0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0"/>
|
|
||||||
<feBlend mode="normal" in2="effect2_dropShadow" result="effect3_dropShadow"/>
|
|
||||||
<feColorMatrix in="SourceAlpha" type="matrix" values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 127 0"/>
|
|
||||||
<feOffset dx="-1"/>
|
|
||||||
<feColorMatrix type="matrix" values="0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0"/>
|
|
||||||
<feBlend mode="normal" in2="effect3_dropShadow" result="effect4_dropShadow"/>
|
|
||||||
<feBlend mode="normal" in="SourceGraphic" in2="effect4_dropShadow" result="shape"/>
|
|
||||||
</filter>
|
|
||||||
<filter id="filter2_dddd" x="15.7457" y="136" width="49.256" height="22.5" filterUnits="userSpaceOnUse" color-interpolation-filters="sRGB">
|
|
||||||
<feFlood flood-opacity="0" result="BackgroundImageFix"/>
|
|
||||||
<feColorMatrix in="SourceAlpha" type="matrix" values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 127 0"/>
|
|
||||||
<feOffset dy="-1"/>
|
|
||||||
<feColorMatrix type="matrix" values="0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0"/>
|
|
||||||
<feBlend mode="normal" in2="BackgroundImageFix" result="effect1_dropShadow"/>
|
|
||||||
<feColorMatrix in="SourceAlpha" type="matrix" values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 127 0"/>
|
|
||||||
<feOffset dy="1"/>
|
|
||||||
<feColorMatrix type="matrix" values="0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0"/>
|
|
||||||
<feBlend mode="normal" in2="effect1_dropShadow" result="effect2_dropShadow"/>
|
|
||||||
<feColorMatrix in="SourceAlpha" type="matrix" values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 127 0"/>
|
|
||||||
<feOffset dx="1"/>
|
|
||||||
<feColorMatrix type="matrix" values="0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0"/>
|
|
||||||
<feBlend mode="normal" in2="effect2_dropShadow" result="effect3_dropShadow"/>
|
|
||||||
<feColorMatrix in="SourceAlpha" type="matrix" values="0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 127 0"/>
|
|
||||||
<feOffset dx="-1"/>
|
|
||||||
<feColorMatrix type="matrix" values="0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0"/>
|
|
||||||
<feBlend mode="normal" in2="effect3_dropShadow" result="effect4_dropShadow"/>
|
|
||||||
<feBlend mode="normal" in="SourceGraphic" in2="effect4_dropShadow" result="shape"/>
|
|
||||||
</filter>
|
|
||||||
</defs>
|
|
||||||
</svg>
|
|
||||||
|
Before Width: | Height: | Size: 24 KiB |
|
Before Width: | Height: | Size: 847 KiB After Width: | Height: | Size: 1.2 MiB |
20
content/blog/non-decimal-numbers-in-tech/base_10_34.svg
Normal file
|
After Width: | Height: | Size: 102 KiB |
|
Before Width: | Height: | Size: 53 KiB |
20
content/blog/non-decimal-numbers-in-tech/base_10_99.svg
Normal file
|
After Width: | Height: | Size: 110 KiB |
|
Before Width: | Height: | Size: 67 KiB After Width: | Height: | Size: 131 KiB |
|
Before Width: | Height: | Size: 15 KiB After Width: | Height: | Size: 28 KiB |
|
Before Width: | Height: | Size: 16 KiB After Width: | Height: | Size: 30 KiB |
|
Before Width: | Height: | Size: 24 KiB After Width: | Height: | Size: 53 KiB |
|
Before Width: | Height: | Size: 248 KiB After Width: | Height: | Size: 197 KiB |
@@ -12,7 +12,7 @@
|
|||||||
|
|
||||||
Computers - on a very low level - are built upon binary (ones and zeros). Think about that - all of the text you're reading on your screen started life as either a one or a zero in some form. That's incredible! How can it turn something so simple into a sprawling sheet of characters that you can read on your device? Let's find out together!
|
Computers - on a very low level - are built upon binary (ones and zeros). Think about that - all of the text you're reading on your screen started life as either a one or a zero in some form. That's incredible! How can it turn something so simple into a sprawling sheet of characters that you can read on your device? Let's find out together!
|
||||||
|
|
||||||
## Decimal
|
# Decimal {#decimal}
|
||||||
|
|
||||||
When you or I count, we typically use 10 numbers in some variation of combination to do so: `0`, `1`, `2`, `3`, `4`, `5`, `6`, `7`, `8`, and `9`.
|
When you or I count, we typically use 10 numbers in some variation of combination to do so: `0`, `1`, `2`, `3`, `4`, `5`, `6`, `7`, `8`, and `9`.
|
||||||
|
|
||||||
@@ -22,14 +22,16 @@ When you count to `10`, you're really using a combination of `1` and `0` in orde
|
|||||||
|
|
||||||
Knowing that we can separate the number from our thoughts allows us to categorize the number in a further manor, breaking it down into smaller groupings mentally. For example, if we take the number `34`, for example, we can break it down into three groups: the _ones_, the _tens_, and the _hundreds_.
|
Knowing that we can separate the number from our thoughts allows us to categorize the number in a further manor, breaking it down into smaller groupings mentally. For example, if we take the number `34`, for example, we can break it down into three groups: the _ones_, the _tens_, and the _hundreds_.
|
||||||
|
|
||||||

|

|
||||||
|
|
||||||
For the number `34`, we break it down into: `0` _hundreds_, `3` _tens_, and `4` _ones_. We can then multiply the higher number with the lower number (the column they're on) to get the numbers **`30`** (`3` _tens_) and **`4`** (`4` _ones_). Finally, we add the sum of them together to make the number we all know and love: **`34`**.
|
For the number `34`, we break it down into: `0` _hundreds_, `3` _tens_, and `4` _ones_. We can then multiply the higher number with the lower number (the column they're on) to get the numbers **`30`** (`3` _tens_) and **`4`** (`4` _ones_). Finally, we add the sum of them together to make the number we all know and love: **`34`**.
|
||||||
|
|
||||||
This breakdown showcases a limitation with having 10 symbols to represent numbers; with only a single column, the highest number we can represent is _`9`_.
|
This breakdown showcases a limitation with having 10 symbols to represent numbers; with only a single column, the highest number we can represent is _`9`_.
|
||||||
Remember that the number **`10`** is a combination of **`0`** and **`1`**? That's due to this limitation. Likewise - with two columns - the highest number we can represent is _`99`_
|
Remember that the number **`10`** is a combination of **`0`** and **`1`**? That's due to this limitation. Likewise - with two columns - the highest number we can represent is _`99`_
|
||||||
|
|
||||||
## Binary
|

|
||||||
|
|
||||||
|
# Binary {#binary}
|
||||||
|
|
||||||
Now this may seem rather simplistic, but it's important to demonstrate this to understand binary. Our numerical system is known as the _base 10 system_. **Called such because there are 10 symbols used to construct all other numbers** (once again, that's: `0`, `1`, `2`, `3`, `4`, `5`, `6`, `7`, `8`, and `9`).
|
Now this may seem rather simplistic, but it's important to demonstrate this to understand binary. Our numerical system is known as the _base 10 system_. **Called such because there are 10 symbols used to construct all other numbers** (once again, that's: `0`, `1`, `2`, `3`, `4`, `5`, `6`, `7`, `8`, and `9`).
|
||||||
Binary, on the other hand, is _base two_. **This means that there are only two symbols that exist in this numerical system.**
|
Binary, on the other hand, is _base two_. **This means that there are only two symbols that exist in this numerical system.**
|
||||||
@@ -85,7 +87,7 @@ And voilà, you have the binary representation of `50`: **`0110010`**
|
|||||||
>
|
>
|
||||||
> While there are plenty of ways to find the binary representation of a decimal number, this example uses a "greedy" alogrithm. I find this algorithm to flow the best with learning of the binary number system, but it's not the only way (or even the best way, oftentimes).
|
> While there are plenty of ways to find the binary representation of a decimal number, this example uses a "greedy" alogrithm. I find this algorithm to flow the best with learning of the binary number system, but it's not the only way (or even the best way, oftentimes).
|
||||||
|
|
||||||
## Hexadecimal
|
# Hexadecimal {#hexadecimal}
|
||||||
|
|
||||||
But binary isn't the only non-deciamal system. You're able to reflect any numerical base so long as you have the correct number of symbols for that system. Let's look at another example of a non-decimal system: _Hexadecimal_.
|
But binary isn't the only non-deciamal system. You're able to reflect any numerical base so long as you have the correct number of symbols for that system. Let's look at another example of a non-decimal system: _Hexadecimal_.
|
||||||
|
|
||||||
@@ -136,11 +138,31 @@ Now if we add up these numbers:
|
|||||||
| `16` | **`3`** |
|
| `16` | **`3`** |
|
||||||
| `1` | **`2`** |
|
| `1` | **`2`** |
|
||||||
|
|
||||||
### Why `256`?
|
## Why `256`?
|
||||||
|
|
||||||
## Applications
|
While reading through this, you may wonder "Where did the `256` come from?". Let's take a step back to anaylize this question.
|
||||||
|
|
||||||
### CSS Colors
|
If you recall, we use the 15 symbols in hexadecimal:
|
||||||
|
|
||||||
|
`0`, `1`, `2`, `3`, `4`, `5`, `6`, `7`, `8`, `9`, `A`, `B`, `C`, `D`, `E`, `F`
|
||||||
|
|
||||||
|
If we reflect these numbers in a single digit (1 number column), the biggest number we can reflect is `F`: `15`.
|
||||||
|
|
||||||
|
This is similar to how the biggest number we can reflect with a single digit in the decimal system is `9`.
|
||||||
|
|
||||||
|
In order to add a number larger than `15` in the hexadecimal system, we need to add another decimal/column. This column would represent the _sixteens_ place. Having `F` in this column, the highest we can represent, and an `F` in the _ones_ would allow us to have `FF`: `255`. As a result, we need to add a _two-hundred-fifty-six_ column to represent any numbers higher.
|
||||||
|
|
||||||
|
> For those that have experience in algebra, you'll notice that these are all exponents of each other.
|
||||||
|
>
|
||||||
|
> Just as _`100`_ is `10^2` for the decimal system, `256` is `16^2`. We can follow this pattern to the next number in the hexadecimal column: `4096`, which is `16^3`. You can even apply it to `1` which is `16^0`
|
||||||
|
>
|
||||||
|
> Binary works in the same manor. The first 5 columns/digits of binary are: `1`, `2`, `4`, `8`, `16` . These numbers align respectively to their binary exponents: `2^0`, `2^1`, `2^2`, `2^3`, `2^4`
|
||||||
|
|
||||||
|
## To Binary {#hexadecimal-to-binary}
|
||||||
|
|
||||||
|
# Applications
|
||||||
|
|
||||||
|
## CSS Colors {#hex-css}
|
||||||
|
|
||||||
Funnily enough, if you've used a "HEX" value in HTML and CSS, you may already be loosely familiar with a similar scenario to what we walked through with the hexadecimal section.
|
Funnily enough, if you've used a "HEX" value in HTML and CSS, you may already be loosely familiar with a similar scenario to what we walked through with the hexadecimal section.
|
||||||
|
|
||||||
@@ -172,7 +194,7 @@ Even without seeing a visual representation, you can tell that this color likely
|
|||||||
|
|
||||||

|

|
||||||
|
|
||||||
### Text Encoding
|
## Text Encoding {#ascii}
|
||||||
|
|
||||||
While hexadecimal has much more immediately noticable application with colors, we started this post off with a question: "How does your computer know what letters to display on screen from only binary?"
|
While hexadecimal has much more immediately noticable application with colors, we started this post off with a question: "How does your computer know what letters to display on screen from only binary?"
|
||||||
|
|
||||||
@@ -189,3 +211,11 @@ When the user types _"This"_, what the computer interprets (using ASCII) is `84`
|
|||||||
> I've removed them to keep the examples simple, but many of them are for symbols (EG: `#`, `/`, and more) and some of them are for internal key commands that were used for terminal computing long ago that your computer now does without you noticing
|
> I've removed them to keep the examples simple, but many of them are for symbols (EG: `#`, `/`, and more) and some of them are for internal key commands that were used for terminal computing long ago that your computer now does without you noticing
|
||||||
>
|
>
|
||||||
> It's also worth mentioning that ASCII, while there are more characters than what's presented here, was eventually replaced in various applications by [Unicode](https://en.wikipedia.org/wiki/Unicode) and other text encoding formats as it lacks various functionality we expect of our machines today, such as emoji and non-latin symbols (like Kanji).
|
> It's also worth mentioning that ASCII, while there are more characters than what's presented here, was eventually replaced in various applications by [Unicode](https://en.wikipedia.org/wiki/Unicode) and other text encoding formats as it lacks various functionality we expect of our machines today, such as emoji and non-latin symbols (like Kanji).
|
||||||
|
|
||||||
|
### To Binary {#ascii-binary}
|
||||||
|
|
||||||
|
... But we can go a step further - binary
|
||||||
|
|
||||||
|
# Conclusion
|
||||||
|
|
||||||
|
While this has been only a high-level overview of how your computer interprets these non-decimal numbers (and some of their applications), it can provide some basic insights to what your computer is doing every time you type in a keystroke or see a color on screen. Under the hood everything is binary, and now you understand the introduction to how to convert binary to numbers you and I may understand better: to decimal!
|
||||||
|
Before Width: | Height: | Size: 48 KiB After Width: | Height: | Size: 94 KiB |
@@ -1,3 +1,8 @@
|
|||||||
|
/**
|
||||||
|
* Replace with gatsby-remark-images-medium-zoom once the following PRs are merged:
|
||||||
|
* https://github.com/JaeYeopHan/gatsby-remark-images-medium-zoom/pull/9/files
|
||||||
|
* https://github.com/JaeYeopHan/gatsby-remark-images-medium-zoom/pull/8
|
||||||
|
*/
|
||||||
import mediumZoom from "medium-zoom";
|
import mediumZoom from "medium-zoom";
|
||||||
|
|
||||||
// @see https://github.com/francoischalifour/medium-zoom#options
|
// @see https://github.com/francoischalifour/medium-zoom#options
|
||||||
@@ -68,7 +73,9 @@ function applyZoomEffect({ excludedSelector, includedSelector, ...options }) {
|
|||||||
const includedEls = Array.from(document.querySelectorAll(includedSelector));
|
const includedEls = Array.from(document.querySelectorAll(includedSelector));
|
||||||
imageElements = imageElements.concat(includedEls);
|
imageElements = imageElements.concat(includedEls);
|
||||||
}
|
}
|
||||||
const images = imageElements.map(el => {
|
const images = imageElements
|
||||||
|
.filter(el => !el.classList.contains("medium-zoom-image"))
|
||||||
|
.map(el => {
|
||||||
function onImageLoad() {
|
function onImageLoad() {
|
||||||
const originalTransition = el.style.transition;
|
const originalTransition = el.style.transition;
|
||||||
|
|
||||||
|
|||||||
@@ -1,5 +1,5 @@
|
|||||||
{
|
{
|
||||||
"name": "count-inline-code",
|
"name": "gatsby-image-svg-version",
|
||||||
"version": "0.0.1",
|
"version": "0.0.1",
|
||||||
"description": "",
|
"description": "",
|
||||||
"main": "index.js",
|
"main": "index.js",
|
||||||
|
|||||||